论文标题
自适应相振荡器网络中的复杂动力学
Complex dynamics in adaptive phase oscillator networks
论文作者
论文摘要
耦合动力单元的网络产生了集体动力学,例如大脑中振荡器或神经元的同步。网络根据其活性调整单元之间耦合强度的能力自然而然地出现在各种情况下,包括大脑中的神经可塑性,并增加了额外的复杂性:节点上的动力学会影响网络的动力学,反之亦然。我们研究了库拉莫托相振荡器的最小模型,包括具有三个参数的一般适应性学习规则(适应性的强度,适应性抵消,适应性变化),模仿基于峰值时间依赖性塑性性(STDP)的学习范式。重要的是,适应性的强度使该系统从经典的库拉莫托模型的极限远离,对应于固定的耦合强度和无适应性,因此可以系统地研究适应性对集体动力学的影响。我们对由n = 2个振荡器组成的最小模型进行了详细的分叉分析。非自适应库拉莫托模型表现出非常简单的动态行为,漂移或频率锁定;但是,一旦适应性的强度超过了临界阈值非平凡的分叉结构:对称适应规则会导致多稳定性和分叉场景,而不对称的适应规则产生了更具吸引力和丰富的动态,包括对Chaos的时期进行型的旋转和旋转的旋转,并显示了旋转的旋转功能。通常,适应性提高了振荡器的同步性。最后,我们还研究了由N = 50振荡器组成的较大系统,并将所得动力学与N = 2振荡器的情况进行比较。
Networks of coupled dynamical units give rise to collective dynamics such as the synchronization of oscillators or neurons in the brain. The ability of the network to adapt coupling strengths between units in accordance with their activity arises naturally in a variety of contexts, including neural plasticity in the brain, and adds an additional layer of complexity: the dynamics on the nodes influence the dynamics of the network and vice versa. We study a minimal model of Kuramoto phase oscillators including a general adaptive learning rule with three parameters (strength of adaptivity, adaptivity offset, adaptivity shift), mimicking learning paradigms based on spike-time-dependent-plasticity (STDP). Importantly, the strength of adaptivity allows to tune the system away away from the limit of the classical Kuramoto model, corresponding to stationary coupling strengths and no adaptation, and thus, to systematically study the impact of adaptivity on the collective dynamics. We carry out a detailed bifurcation analysis for the minimal model consisting of N = 2 oscillators. The non-adaptive Kuramoto model exhibits very simple dynamic behavior, drift or frequency-locking; but once the strength of adaptivity exceeds a critical threshold non-trivial bifurcation structures unravel: A symmetric adaptation rule results in multi-stability and bifurcation scenarios, and an asymmetric adaptation rule generates even more intriguing and rich dynamics, including a period doubling-cascade to chaos as well as oscillations displaying features of both librations and rotations simultaneously. Generally, adaptation improves the synchronizability of the oscillators. Finally, we also numerically investigate a larger system consisting of N = 50 oscillators and compare the resulting dynamics with the case of N = 2 oscillators.