论文标题
健身校正的块模型,或如何创建最大渗透性数据驱动的空间社交网络
The Fitness-Corrected Block Model, or how to create maximum-entropy data-driven spatial social networks
论文作者
论文摘要
网络模型在解释和再现经验观察到的模式中起着重要作用。合适的模型可用于在保留其某些特征的同时随机化观察到的网络,或者生成合成图,其属性可以根据给定种群的特性进行调整。在本文中,我们介绍了由适应性校正的块模型,该模型的可调密度变化,对众所周知的校正块模型的可调密度变化,我们表明所提出的构造产生了最大的熵模型。当网络稀疏时,我们得出了仅取决于约束和所选适应性分布的模型分布的分析表达式。我们的模型非常适合定义最大数据驱动的空间社交网络,在该空间驱动的空间社交网络中,每个块都标识具有相似位置(例如居住)和年龄的顶点,并且可以从可用的数据中推断出预期的块到块邻接矩阵。在这种情况下,稀疏的政权近似与现象学模型一致,其中链接结合两个个体的概率与他们的社交性和典型的年龄群体成正比,而它是其地理距离的逆力。我们通过模拟风格化的市区来支持我们的分析结果。
Models of networks play a major role in explaining and reproducing empirically observed patterns. Suitable models can be used to randomize an observed network while preserving some of its features, or to generate synthetic graphs whose properties may be tuned upon the characteristics of a given population. In the present paper, we introduce the Fitness-Corrected Block Model, an adjustable-density variation of the well-known Degree-Corrected Block Model, and we show that the proposed construction yields a maximum entropy model. When the network is sparse, we derive an analytical expression for the degree distribution of the model that depends on just the constraints and the chosen fitness-distribution. Our model is perfectly suited to define maximum-entropy data-driven spatial social networks, where each block identifies vertices having similar position (e.g., residence) and age, and where the expected block-to-block adjacency matrix can be inferred from the available data. In this case, the sparse-regime approximation coincides with a phenomenological model where the probability of a link binding two individuals is directly proportional to their sociability and to the typical cohesion of their age-groups, whereas it decays as an inverse-power of their geographic distance. We support our analytical findings through simulations of a stylized urban area.