论文标题
使用强化学习评估前往经济派遣的评估
Evaluation of Look-ahead Economic Dispatch Using Reinforcement Learning
论文作者
论文摘要
现代电力系统正在经历由可再生能源驱动的各种挑战,该挑战要求开发新颖的调度方法,例如增强学习(RL)。对这些方法以及RL药物的评估很大程度上都在探索中。在本文中,我们提出了一种评估方法,以分析RL代理的性能在审查的经济调度方案中。这种方法是通过扫描多个操作方案来进行的。特别是,开发了一种方案生成方法来生成网络方案和需求方案以进行评估,并且根据功率流的变化率汇总了网络结构。然后定义了几个指标来从经济和安全的角度评估代理商的绩效。在案例研究中,我们使用经过改进的IEEE 30总线系统来说明拟议的评估方法的有效性,模拟结果揭示了对不同情况的良好和快速适应。不同的RL代理之间的比较也很有帮助,可以为更好地设计学习策略提供建议。
Modern power systems are experiencing a variety of challenges driven by renewable energy, which calls for developing novel dispatch methods such as reinforcement learning (RL). Evaluation of these methods as well as the RL agents are largely under explored. In this paper, we propose an evaluation approach to analyze the performance of RL agents in a look-ahead economic dispatch scheme. This approach is conducted by scanning multiple operational scenarios. In particular, a scenario generation method is developed to generate the network scenarios and demand scenarios for evaluation, and network structures are aggregated according to the change rates of power flow. Then several metrics are defined to evaluate the agents' performance from the perspective of economy and security. In the case study, we use a modified IEEE 30-bus system to illustrate the effectiveness of the proposed evaluation approach, and the simulation results reveal good and rapid adaptation to different scenarios. The comparison between different RL agents is also informative to offer advice for a better design of the learning strategies.