论文标题

为了提高给定非线性观察者的估计性能:多观察者方法

Towards improving the estimation performance of a given nonlinear observer: a multi-observer approach

论文作者

Petri, E., Postoyan, R., Astolfi, D., Nešić, D., Andrieu, V.

论文摘要

如今,可以为广泛的系统设计观察者提供各种方法。然而,观察者调整以实现令人满意的估计绩效的问题仍然很大程度上开放。本文提出了一个一般的监督设计框架,用于在线调整观察者的收益,以实现稳健性和融合速度之间的各种权衡。我们假设已经为一般的非线性系统设计了强大的名义观察者,目标是提高其性能。为此,我们介绍了一种新型的混合多观察者,该混合动力多观察者由名义上的一个和额外的观察者样系统组成,该系统集体称为模式,并且与名义观察者仅在输出注入收益方面有所不同。然后,我们在线评估多观察者的每种模式的估计成本,根据这些成本,我们在每次即时选择其中之一。提出了两种不同的策略。在第一个中,每次算法在不同模式之间切换时,模式的初始条件都是重置的。在第二个中,初始条件不是重置。我们证明了混合估计方案的收敛性能,并说明了在数值示例上提高给定标称高增益观察者性能的方法的效率。

Various methods are nowadays available to design observers for broad classes of systems. Nevertheless, the question of the tuning of the observer to achieve satisfactory estimation performance remains largely open. This paper presents a general supervisory design framework for online tuning of the observer gains with the aim of achieving various trade-offs between robustness and speed of convergence. We assume that a robust nominal observer has been designed for a general nonlinear system and the goal is to improve its performance. We present for this purpose a novel hybrid multi-observer, which consists of the nominal one and a bank of additional observer-like systems, that are collectively referred to as modes and that differ from the nominal observer only in their output injection gains. We then evaluate on-line the estimation cost of each mode of the multi-observer and, based on these costs, we select one of them at each time instant. Two different strategies are proposed. In the first one, initial conditions of the modes are reset each time the algorithm switches between different modes. In the second one, the initial conditions are not reset. We prove a convergence property for the hybrid estimation scheme and we illustrate the efficiency of the approach in improving the performance of a given nominal high-gain observer on a numerical example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源