论文标题
通过卷积神经网络确定旋转核心偏转超新星的核心结构和核方程
Determine the Core Structure and Nuclear Equation of State of Rotating Core-Collapse Supernovae with Gravitational Waves by Convolutional Neural Networks
论文作者
论文摘要
从附近的核心折叠超新星中检测引力波将对状态的超新星发动机和核方程式产生有意义的限制。在这里,我们使用Richers等人的1824波形,使用卷积神经网络模型来识别核心旋转速率,旋转长度尺度和状态核方程(EOS)。 (2017)对于12个太阳质量祖先。对于旋转长度尺度($ 93 \%$)和旋转率($ 95 \%$)的分类的高预测准确性可以使用从-10 ms到6 ms Core core bounce的重力波信号来实现。通过在迅速对流阶段加上额外的48毫秒信号,我们可以在四个主要EOS组的分类中获得$ 96 \%$的准确性。结合了上面的三个模型,我们可以正确预测核心旋转速率,旋转长度尺度和EOS,同时以超过$ 85 \%$的准确性。最后,将传输学习方法应用于Flash模拟中的其他74个波形(Pan等,2018),我们表明,使用Richers波形的模型即使对于连续值,平均绝对误差仅为0.32 RAD S $^{-1} $,即使是连续的绝对误差,也可以成功预测PAN波形的旋转速率。这些结果表明,我们的模型可以应用于通过GW信号识别核心偏离超新星事件的更广泛的参数。
Detecting gravitational waves from a nearby core-collapse supernova would place meaningful constraints on the supernova engine and nuclear equation of state. Here we use Convolutional Neural Network models to identify the core rotational rates, rotation length scales, and the nuclear equation of state (EoS), using the 1824 waveforms from Richers et al. (2017) for a 12 solar mass progenitor. High prediction accuracy for the classifications of the rotation length scales ($93\%$) and the rotational rates ($95\%$) can be achieved using the gravitational wave signals from -10 ms to 6 ms core bounce. By including additional 48 ms signals during the prompt convection phase, we could achieve $96\%$ accuracy on the classification of four major EoS groups. Combining three models above, we could correctly predict the core rotational rates, rotation length scales, and the EoS at the same time with more than $85\%$ accuracy. Finally, applying a transfer learning method for additional 74 waveforms from FLASH simulations (Pan et al. 2018), we show that our model using Richers' waveforms could successfully predict the rotational rates from Pan's waveforms even for a continuous value with a mean absolute errors of 0.32 rad s$^{-1}$ only. These results demonstrate a much broader parameter regimes our model can be applied for the identification of core-collapse supernova events through GW signals.