论文标题

Syntha1c:朝着临床解释的糖尿病风险分层的患者表示

SynthA1c: Towards Clinically Interpretable Patient Representations for Diabetes Risk Stratification

论文作者

Yao, Michael S., Chae, Allison, MacLean, Matthew T., Verma, Anurag, Duda, Jeffrey, Gee, James, Torigian, Drew A., Rader, Daniel, Kahn, Charles, Witschey, Walter R., Sagreiya, Hersh

论文摘要

2型糖尿病(T2DM)的早期诊断对于及时的治疗干预措施和生活方式改变至关重要。随着可用于临床办公室访问的时间缩短和医学成像数据变得更广泛,患者图像数据可用于机会主义地识别患者的医生进行其他T2DM诊断检查。我们调查了是否可以在表格学习分类器模型中利用图像衍生的表型数据来预测自动化方式的T2DM风险,以标记高危患者,而无需进行其他血液实验室测量。与传统的二进制分类器相反,我们利用神经网络和决策树模型将患者数据表示为“ Syntha1c”潜在变量,这些变量模仿了血液血红蛋白A1C经验实验室测量,其敏感性高达87.6%。为了评估Syntha1c模型如何推广到其他患者人群,我们引入了一种新型的可推广指标,该指标使用香草数据增强技术来预测输入域外协变量方面的模型性能。我们表明,图像衍生的表型和体格检查数据可以准确地预测糖尿病风险,这是通过人工智能和医学成像实现的机会性风险分层的一种手段。我们的代码可在https://github.com/allisonjchae/dmt2riskassessment上找到。

Early diagnosis of Type 2 Diabetes Mellitus (T2DM) is crucial to enable timely therapeutic interventions and lifestyle modifications. As the time available for clinical office visits shortens and medical imaging data become more widely available, patient image data could be used to opportunistically identify patients for additional T2DM diagnostic workup by physicians. We investigated whether image-derived phenotypic data could be leveraged in tabular learning classifier models to predict T2DM risk in an automated fashion to flag high-risk patients without the need for additional blood laboratory measurements. In contrast to traditional binary classifiers, we leverage neural networks and decision tree models to represent patient data as 'SynthA1c' latent variables, which mimic blood hemoglobin A1c empirical lab measurements, that achieve sensitivities as high as 87.6%. To evaluate how SynthA1c models may generalize to other patient populations, we introduce a novel generalizable metric that uses vanilla data augmentation techniques to predict model performance on input out-of-domain covariates. We show that image-derived phenotypes and physical examination data together can accurately predict diabetes risk as a means of opportunistic risk stratification enabled by artificial intelligence and medical imaging. Our code is available at https://github.com/allisonjchae/DMT2RiskAssessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源