论文标题

探索最佳粒度以进行非结构化健康记录的提取性摘要:对日本最大的多机构健康记录档案的分析

Exploring Optimal Granularity for Extractive Summarization of Unstructured Health Records: Analysis of the Largest Multi-Institutional Archive of Health Records in Japan

论文作者

Ando, Kenichiro, Okumura, Takashi, Komachi, Mamoru, Horiguchi, Hiromasa, Matsumoto, Yuji

论文摘要

临床文本的自动汇总可以减轻医疗专业人员的负担。 “放电摘要”是摘要的一种有希望的应用,因为它们可以从每日住院记录中产生。我们的初步实验表明,放电摘要中有20-31%的描述与住院记录的内容重叠。但是,目前尚不清楚如何从非结构化来源生成摘要。为了分解医师的摘要过程,这项研究旨在确定摘要中的最佳粒度。我们首先定义了具有不同粒度的三种摘要单元,以比较放电摘要生成的性能:整个句子,临床段和条款。我们在这项研究中定义了临床细分,旨在表达最小的医学意义概念。为了获得临床细分,有必要在管道的第一阶段自动拆分文本。因此,我们比较了基于规则的方法和一种机器学习方法,而后者在分裂任务中以F1分数为0.846优于FORMER。接下来,我们在日本的多机构国家健康记录上,使用三种类型的单元(基于Rouge-1指标)测量了提取性摘要的准确性。使用整个句子,临床段和条款分别为31.91、36.15和25.18的提取性摘要的测量精度分别为。我们发现,临床细分的准确性比句子和条款更高。该结果表明,住院记录的汇总需要比面向句子的处理更精细的粒度。尽管我们仅使用日本健康记录,但可以解释如下:医师从患者记录中提取“具有医学意义的概念”并重新组合它们...

Automated summarization of clinical texts can reduce the burden of medical professionals. "Discharge summaries" are one promising application of the summarization, because they can be generated from daily inpatient records. Our preliminary experiment suggests that 20-31% of the descriptions in discharge summaries overlap with the content of the inpatient records. However, it remains unclear how the summaries should be generated from the unstructured source. To decompose the physician's summarization process, this study aimed to identify the optimal granularity in summarization. We first defined three types of summarization units with different granularities to compare the performance of the discharge summary generation: whole sentences, clinical segments, and clauses. We defined clinical segments in this study, aiming to express the smallest medically meaningful concepts. To obtain the clinical segments, it was necessary to automatically split the texts in the first stage of the pipeline. Accordingly, we compared rule-based methods and a machine learning method, and the latter outperformed the formers with an F1 score of 0.846 in the splitting task. Next, we experimentally measured the accuracy of extractive summarization using the three types of units, based on the ROUGE-1 metric, on a multi-institutional national archive of health records in Japan. The measured accuracies of extractive summarization using whole sentences, clinical segments, and clauses were 31.91, 36.15, and 25.18, respectively. We found that the clinical segments yielded higher accuracy than sentences and clauses. This result indicates that summarization of inpatient records demands finer granularity than sentence-oriented processing. Although we used only Japanese health records, it can be interpreted as follows: physicians extract "concepts of medical significance" from patient records and recombine them ...

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源