论文标题
顶点代数的Mathieu-Zhao子空间
Mathieu-Zhao Subspaces of Vertex Algebras
论文作者
论文摘要
MATHIEU-ZHAO子空间是对联想代数$ \ Mathcal a $的理想的概括,而不是Unital Ring $ r $ $ r $首先是在2010年正式化的。一个Vertex代数是一种代数结构,是一种代数结构。我们正式介绍了Mathieu-Zhao子空间$ m $ m $的定义。在与联想代数的自然连接的基础上,我们通过小组动作本征空间分解对一组无限的非理想的,非理想的Mathieu-Zhao子空间进行了简单和一般顶点代数的分类。最后,我们指出了本地nilpotent $ \ varepsilon $衍生(LNEND)的猜想。
A Mathieu-Zhao subspace is a generalization of an ideal of an associative algebra $\mathcal A$ over a unital ring $R$ first formalized in 2010. A vertex algebra is an algebraic structure first developed in conjunction with string theory in the 1960s and later axiomatized by mathematicians in the 1980s. We formally introduce the definition of a Mathieu-Zhao subspace $M$ of a vertex algebra $V$. Building on natural connections to associative algebras, we classify an infinite set of non-trivial, non-ideal Mathieu-Zhao subspaces for simple and general vertex algebras by group action eigenspace decomposition. Finally, we state the locally nilpotent $\varepsilon$-derivation (LNED) conjecture for vertex algebras.