论文标题

朝着基于ML的聚焦激光脉冲诊断

Towards ML-based diagnostics of focused laser pulse

论文作者

Rodimkov, Y. R., Volokitin, V. D., Meyerov, I. B., Efimenko, E. S.

论文摘要

当前,机器学习(ML)方法被广泛用于处理物理实验的结果。在某些情况下,由于实验数据的数量有限,可以根据分析理论模拟的合成数据进行预训练,然后使用实验数据进行微调。这种方法的一个局限性是分析模型的潜在参数的存在,该值很难或不可能估计。即使应用于合成数据,也可能会错误地设置这些参数。为了克服这个问题,我们在分析模型的随机不同参数上训练ML模型,以迫使ML模型集中于更一般取决于潜在参数的更通用模式。我们将这种方法应用于与波前复杂结构的激光脉冲紧密聚焦的问题。我们观察到训练和测试针对潜在参数不同值生成的数据集上的ML模型时,重建倾斜参数的良好精度。这证实ML模型能够选择相关信息,而无需过度拟合潜在参数的某些值固有的特定特征。我们认为,这种方法将丰富ML方法在激光脉冲的实验诊断中的可能应用。

Currently, machine learning (ML) methods are widely used to process the results of physical experiments. In some cases, due to the limited amount of experimental data, ML-models can be pre-trained on synthetic data simulated based on the analytical theory and then fine-tuned using experimental data. A limitation of this approach is the presence of the latent parameters of the analytical model, which values are difficult or impossible to estimate. Setting these parameters incorrectly may induce a dataset shift even when applied to synthetic data. To overcome this problem, we train the ML-model on a dataset with randomly varied latent parameters of the analythical model to force the ML-model to concentrate on more general patterns that depend weakly on the latent parameters. We applied this approach to the problem of tight focusing of a laser pulse with the complex structure of the wavefront. We observed good accuracy of reconstructing of the tilt parameters when training and testing the ML-model on datasets generated for different values of the latent parameters. This confirms that the ML-model was able to select relevant information without over-fitting for specific features inherent in certain values of the latent parameters. We believe that this approach will enrich possible applications of ML-methods to an experimental diagnostics of laser pulses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源