论文标题

具有高阶频率依赖性的自适应过滤器的元学习

Meta-Learning for Adaptive Filters with Higher-Order Frequency Dependencies

论文作者

Wu, Junkai, Casebeer, Jonah, Bryan, Nicholas J., Smaragdis, Paris

论文摘要

自适应过滤器适用于许多信号处理任务,包括声音回声取消,波束形成等。自适应过滤器通常使用算法(例如最小值平方(LMS),递归最小二乘(RLS)或Kalman滤波器更新)来控制。此类模型通常应用于频域中,假设频率无关处理,并且为简单起见,不利用高阶频率依赖性。但是,最近关于元自适应过滤器的工作表明,我们可以使用无手动推导的神经网络控制过滤器适应,从而激发了新工作来利用此类信息。在这项工作中,我们提出了高阶元自适应过滤器,这是元素自适应过滤器的关键改进,该过滤器结合了高阶频率依赖性。我们展示了我们对声学回声取消的方法,并开发了一个过滤器系列,该家族对竞争基准产生多DB的改进,并且至少降低了复杂的顺序。此外,我们表明我们在有或没有下游语音增强器的情况下保持了改进。

Adaptive filters are applicable to many signal processing tasks including acoustic echo cancellation, beamforming, and more. Adaptive filters are typically controlled using algorithms such as least-mean squares(LMS), recursive least squares(RLS), or Kalman filter updates. Such models are often applied in the frequency domain, assume frequency independent processing, and do not exploit higher-order frequency dependencies, for simplicity. Recent work on meta-adaptive filters, however, has shown that we can control filter adaptation using neural networks without manual derivation, motivating new work to exploit such information. In this work, we present higher-order meta-adaptive filters, a key improvement to meta-adaptive filters that incorporates higher-order frequency dependencies. We demonstrate our approach on acoustic echo cancellation and develop a family of filters that yield multi-dB improvements over competitive baselines, and are at least an order-of-magnitude less complex. Moreover, we show our improvements hold with or without a downstream speech enhancer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源