论文标题
中间质量黑洞和黑洞积聚的基本平面
Intermediate-mass black holes and the fundamental plane of black hole accretion
论文作者
论文摘要
我们提出了8个新的5 GHz VLA观察结果,该样本的8个活性中间质量黑洞$ 10^{4.9} <m <10^{6.1} {6.1} \ m _ {\ odot} $在带有星形的星系中,带有恒星质量$ m _ {*} <3 \ 3 \ 3 \ times 10^times 10^9}} $} $} $我们检测到8个来源中的5个具有很高的意义。在检测中,有4个与点源一致,一个(SDSS J095418.15+471725.1,带有黑洞质量$ M <10^{5} \ 10} \ M _ {\ odot} $)清楚地显示出具有喷射形态的扩展发射。将新的无线电数据与黑洞质量和文献X射线测量相结合,我们将资源放在黑洞积聚的基本平面上。我们发现,来源与基本平面一致的程度取决于其基于光学窄发射线比的星形成/复合/AGN分类。他的单一形成源与基本平面不一致。这三个复合源是一致的,四个AGN来源中的三个与基本平面不一致。我们认为这种不一致是真实的,而不是错误地归因于黑洞活动的恒星形成的结果。取而代之的是,我们确定样品中具有类似AGN的光发射线比率的来源不遵循基本平面,因此请注意使用基本平面来估算没有其他约束的质量,例如无线电光谱指数,辐射效率或埃德丁顿分数。
We present new 5 GHz VLA observations of a sample of 8 active intermediate-mass black holes with masses $10^{4.9} < M < 10^{6.1}\ M_{\odot}$ found in galaxies with stellar masses $M_{*} < 3 \times 10^{9}\ M_{\odot}$. We detected 5 of the 8 sources at high significance. Of the detections, 4 were consistent with a point source, and one (SDSS J095418.15+471725.1, with black hole mass $M < 10^{5}\ M_{\odot}$) clearly shows extended emission that has a jet morphology. Combining our new radio data with the black hole masses and literature X-ray measurements, we put the sources on the fundamental plane of black hole accretion. We find that the extent to which the sources agree with the fundamental plane depends on their star-forming/composite/AGN classification based on optical narrow emission line ratios. he single star-forming source is inconsistent with the fundamental plane. The three composite sources are consistent, and three of the four AGN sources are inconsistent with the fundamental plane. We argue that this inconsistency is genuine and not a result of misattributing star-formation to black hole activity. Instead, we identify the sources in our sample that have AGN-like optical emission line ratios as not following the fundamental plane and thus caution the use of the fundamental plane to estimate masses without additional constraints, such as radio spectral index, radiative efficiency, or the Eddington fraction.