论文标题
WGICP:可区分加权GICP的LIDAR探光仪
WGICP: Differentiable Weighted GICP-Based Lidar Odometry
论文作者
论文摘要
我们提出了一种适用于一般3D点云数据的新型可区分加权迭代最接近点(WGICP)方法,包括来自LIDAR的数据。我们的方法建立在可区分的通用ICP(GICP)的基础上,我们建议使用可区分的k-neareb-nebriend(KNN)算法来增强可怜性。可区分的GICP算法提供了相对于每个输入点的输出姿势估计的梯度,这使我们能够训练神经网络以预测其在估计正确姿势时的重要性或权重。与其他基于ICP的方法相反,这些方法使用基于体素的下采样或匹配方法来降低计算成本,我们的方法直接通过选择具有最高权重的人并忽略冗余重量的冗余量来直接减少GICP使用的点数。我们表明,我们的方法提高了KITTI数据集的GICP算法的准确性和速度,可用于开发更强大,更有效的大满贯系统。
We present a novel differentiable weighted generalized iterative closest point (WGICP) method applicable to general 3D point cloud data, including that from Lidar. Our method builds on differentiable generalized ICP (GICP), and we propose using the differentiable K-Nearest Neighbor (KNN) algorithm to enhance differentiability. The differentiable GICP algorithm provides the gradient of output pose estimation with respect to each input point, which allows us to train a neural network to predict its importance, or weight, in estimating the correct pose. In contrast to the other ICP-based methods that use voxel-based downsampling or matching methods to reduce the computational cost, our method directly reduces the number of points used for GICP by only selecting those with the highest weights and ignoring redundant ones with lower weights. We show that our method improves both accuracy and speed of the GICP algorithm for the KITTI dataset and can be used to develop a more robust and efficient SLAM system.