论文标题

关键循环模型中的对角场

Diagonal fields in critical loop models

论文作者

Ribault, Sylvain

论文摘要

在关键循环模型中,存在具有任意共形尺寸的对角线场,其$ 3 $ - 点的功能与$ c \ leq 1 $的liouville理论的函数相吻合。我们研究了他们的$ n $ - 点功能,取决于$ 2^{n-1} $ combinatorloticallotaliforlo vilitional in verionalloforical intarato notor vlops loops loops lops lops in the $ n $ punctures的循环。使用数值共形性自举方法,我们发现$ 4 $ - 点函数分解为完整但离散的保形块的线性组合。我们得出的结论是,对角线场属于$ O(n)$模型的扩展。

In critical loop models, there exist diagonal fields with arbitrary conformal dimensions, whose $3$-point functions coincide with those of Liouville theory at $c\leq 1$. We study their $N$-point functions, which depend on the $2^{N-1}$ weights of combinatorially inequivalent loops on a sphere with $N$ punctures. Using a numerical conformal bootstrap approach, we find that $4$-point functions decompose into infinite but discrete linear combinations of conformal blocks. We conclude that diagonal fields belong to an extension of the $O(n)$ model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源