论文标题
通过上游自适应采样模型测试罕见的下游安全违规行为
Testing Rare Downstream Safety Violations via Upstream Adaptive Sampling of Perception Error Models
论文作者
论文摘要
在模拟中测试黑盒感知控制系统面临两个困难。首先,模拟中的感知输入缺乏现实世界传感器输入的保真度。其次,对于相当准确的感知系统,遇到罕见的故障轨迹可能需要进行许多模拟。本文结合了感知误差模型 - 基于传感器的检测系统的替代模型与状态依赖性自适应重要性采样。这使我们能够有效地评估模拟中现实世界感知控制系统的罕见失败概率。我们使用配备RGB障碍物检测器的自动制动系统进行的实验表明,我们的方法可以使用廉价的模拟来计算准确的故障概率。此外,我们展示了安全指标的选择如何影响能够可靠采样高概率失败的学习提案分布的过程。
Testing black-box perceptual-control systems in simulation faces two difficulties. Firstly, perceptual inputs in simulation lack the fidelity of real-world sensor inputs. Secondly, for a reasonably accurate perception system, encountering a rare failure trajectory may require running infeasibly many simulations. This paper combines perception error models -- surrogates for a sensor-based detection system -- with state-dependent adaptive importance sampling. This allows us to efficiently assess the rare failure probabilities for real-world perceptual control systems within simulation. Our experiments with an autonomous braking system equipped with an RGB obstacle-detector show that our method can calculate accurate failure probabilities with an inexpensive number of simulations. Further, we show how choice of safety metric can influence the process of learning proposal distributions capable of reliably sampling high-probability failures.