论文标题

扩散单元:3D点云分段的可解释边缘增强和抑制学习

Diffusion Unit: Interpretable Edge Enhancement and Suppression Learning for 3D Point Cloud Segmentation

论文作者

Xiu, Haoyi, Liu, Xin, Wang, Weimin, Kim, Kyoung-Sook, Shinohara, Takayuki, Chang, Qiong, Matsuoka, Masashi

论文摘要

3D点云是连续表面的离散样本,可用于各种应用。但是,缺乏真正的连接信息,即边缘信息,使点云识别具有挑战性。最近的边缘感知方法将边缘建模纳入网络设计中,以更好地描述局部结构。尽管这些方法表明,将边缘信息合并是有益的,但边缘信息的帮助仍然不清楚,这使用户很难分析其有用性。为了阐明这一问题,在这项研究中,我们提出了一种称为扩散单元(DU)的新算法,该算法以原则性且可解释的方式处理边缘信息,同时提供体面的改进。首先,我们从理论上表明,DU学会了执行任务呈纤维边缘的增强和抑制作用。其次,我们通过实验观察并验证边缘增强和抑制行为。第三,我们从经验上证明,这种行为有助于提高绩效。对具有挑战性的基准进行了广泛的实验和分析,验证了DU的有效性。具体而言,我们的方法使用S3DIS使用Shapenet零件和场景分割来实现对象零件分割的最新性能。我们的源代码可在https://github.com/martianxiu/diffusionunit上找到。

3D point clouds are discrete samples of continuous surfaces which can be used for various applications. However, the lack of true connectivity information, i.e., edge information, makes point cloud recognition challenging. Recent edge-aware methods incorporate edge modeling into network designs to better describe local structures. Although these methods show that incorporating edge information is beneficial, how edge information helps remains unclear, making it difficult for users to analyze its usefulness. To shed light on this issue, in this study, we propose a new algorithm called Diffusion Unit (DU) that handles edge information in a principled and interpretable manner while providing decent improvement. First, we theoretically show that DU learns to perform task-beneficial edge enhancement and suppression. Second, we experimentally observe and verify the edge enhancement and suppression behavior. Third, we empirically demonstrate that this behavior contributes to performance improvement. Extensive experiments and analyses performed on challenging benchmarks verify the effectiveness of DU. Specifically, our method achieves state-of-the-art performance in object part segmentation using ShapeNet part and scene segmentation using S3DIS. Our source code is available at https://github.com/martianxiu/DiffusionUnit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源