论文标题

概率Dalek-具有概率预测的超新星断层扫描的模拟框架

Probabilistic Dalek -- Emulator framework with probabilistic prediction for supernova tomography

论文作者

Kerzendorf, Wolfgang, Chen, Nutan, O'Brien, Jack, Buchner, Johannes, van der Smagt, Patrick

论文摘要

超新星光谱时间序列可用于重建称为超新星层析成像的空间分辨爆炸模型。除了观察到的光谱时间序列外,超新星断层扫描还需要一个辐射转移模型来执行重建不确定性定量的反问题。超新星断层扫描模型的最小参数化是大约十二个参数,其逼真的参数需要100多个参数。现实的辐射转移模型需要数十分钟的CPU分钟来进行单个评估,从而使问题在传统手段上使用传统手段需要数百万的MCMC样本来解决此类问题。一种使用机器学习技术加速称为替代模型或模拟器的新方法为这些问题提供了一种解决方案,以及一种了解光谱时间序列中的祖/爆炸的方法。 Tardis Supernova辐射传输代码存在模拟器,但它们仅在简单的低维模型(大约十二个参数)上表现良好,并且在Supernova字段中具有少量应用程序的知识增益。在这项工作中,我们提出了一个辐射转移代码TARDIS的新模拟器,该模拟器不仅胜过现有的仿真器,而且还提供了预测中的不确定性。它为未来的基于活跃学习的机械提供了基础,该机械将能够模拟数百个参数的高维空间,这对于在超新星和相关领域中阐明紧急问题至关重要。

Supernova spectral time series can be used to reconstruct a spatially resolved explosion model known as supernova tomography. In addition to an observed spectral time series, a supernova tomography requires a radiative transfer model to perform the inverse problem with uncertainty quantification for a reconstruction. The smallest parametrizations of supernova tomography models are roughly a dozen parameters with a realistic one requiring more than 100. Realistic radiative transfer models require tens of CPU minutes for a single evaluation making the problem computationally intractable with traditional means requiring millions of MCMC samples for such a problem. A new method for accelerating simulations known as surrogate models or emulators using machine learning techniques offers a solution for such problems and a way to understand progenitors/explosions from spectral time series. There exist emulators for the TARDIS supernova radiative transfer code but they only perform well on simplistic low-dimensional models (roughly a dozen parameters) with a small number of applications for knowledge gain in the supernova field. In this work, we present a new emulator for the radiative transfer code TARDIS that not only outperforms existing emulators but also provides uncertainties in its prediction. It offers the foundation for a future active-learning-based machinery that will be able to emulate very high dimensional spaces of hundreds of parameters crucial for unraveling urgent questions in supernovae and related fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源