论文标题

嘈杂量子计算机的拓扑数据分析

Topological data analysis on noisy quantum computers

论文作者

Akhalwaya, Ismail Yunus, Ubaru, Shashanka, Clarkson, Kenneth L., Squillante, Mark S., Jejjala, Vishnu, He, Yang-Hui, Naidoo, Kugendran, Kalantzis, Vasileios, Horesh, Lior

论文摘要

拓扑数据分析(TDA)是一种强大的技术,用于提取高维数据的复杂且有价值的形状相关的摘要。但是,计算TDA的经典算法的计算需求是过高的,并且对于高阶特征而言迅速变得不切实际。量子计算机为某些计算问题提供了显着加速的潜力。的确,据称TDA是一个问题,但是,提出的针对该问题提出的量子计算算法,例如劳埃德,Garnerone和Zanardi的原始量子TDA(QTDA)配方,需要当前不可用的错误竞争资格。在这项研究中,我们介绍了NISQ-TDA,这是一种完全实现的端到端量子机学习算法,仅需要一个短电路深度,适用于高维经典数据,并且可以针对某些类别的问题提供可证明的渐近加速。该算法既没有数据加载问题,也不需要明确地将输入数据存储在量子计算机上。该算法在量子计算设备以及应用于小数据集的噪声量子模拟器以及噪声量子模拟器上成功执行。初步经验结果表明该算法对噪声是可靠的。

Topological data analysis (TDA) is a powerful technique for extracting complex and valuable shape-related summaries of high-dimensional data. However, the computational demands of classical algorithms for computing TDA are exorbitant, and quickly become impractical for high-order characteristics. Quantum computers offer the potential of achieving significant speedup for certain computational problems. Indeed, TDA has been purported to be one such problem, yet, quantum computing algorithms proposed for the problem, such as the original Quantum TDA (QTDA) formulation by Lloyd, Garnerone and Zanardi, require fault-tolerance qualifications that are currently unavailable. In this study, we present NISQ-TDA, a fully implemented end-to-end quantum machine learning algorithm needing only a short circuit-depth, that is applicable to high-dimensional classical data, and with provable asymptotic speedup for certain classes of problems. The algorithm neither suffers from the data-loading problem nor does it need to store the input data on the quantum computer explicitly. The algorithm was successfully executed on quantum computing devices, as well as on noisy quantum simulators, applied to small datasets. Preliminary empirical results suggest that the algorithm is robust to noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源