论文标题
控制浮力工程偶极合奏中的局部热化动力学
Controlling local thermalization dynamics in a Floquet-engineered dipolar ensemble
论文作者
论文摘要
了解封闭量子系统中热化的显微镜机制是现代量子多体物理学的关键挑战之一。我们通过利用其固有的疾病来展示一种在大规模多体系统中探测局部热化的方法,并使用它来发现具有可调相互作用的三维偶极相互作用的自旋系统中的热化机制。利用高级汉密尔顿工程技术探索一系列自旋汉密尔顿人,我们观察到当我们改变工程交换各向异性时,特征形状和局部相关衰减的时间尺度发生了显着变化。我们表明,这些观察结果源于系统的内在多体动力学,并揭示了局部旋转簇中保护定律的签名,这些旋转簇不容易使用全局探针表现出来。我们的方法为局部热化动力学的可调节性提供了精美的镜头,并可以详细研究在牢固相互交互的量子系统中进行争夺,热力学和流体动力学。
Understanding the microscopic mechanisms of thermalization in closed quantum systems is among the key challenges in modern quantum many-body physics. We demonstrate a method to probe local thermalization in a large-scale many-body system by exploiting its inherent disorder, and use this to uncover the thermalization mechanisms in a three-dimensional, dipolar-interacting spin system with tunable interactions. Utilizing advanced Hamiltonian engineering techniques to explore a range of spin Hamiltonians, we observe a striking change in the characteristic shape and timescale of local correlation decay as we vary the engineered exchange anisotropy. We show that these observations originate from the system's intrinsic many-body dynamics and reveal the signatures of conservation laws within localized clusters of spins, which do not readily manifest using global probes. Our method provides an exquisite lens into the tunable nature of local thermalization dynamics, and enables detailed studies of scrambling, thermalization and hydrodynamics in strongly-interacting quantum systems.