论文标题
分布式半监督模糊回归,插值一致性正则化
Distributed Semi-supervised Fuzzy Regression with Interpolation Consistency Regularization
论文作者
论文摘要
最近,分布式的半监督学习(DSSL)算法表明,它们在利用未标记的样本上的互连网络上的有效性,在这些网络上,代理无法彼此共享其原始数据,并且只能与邻居传达非敏感信息。但是,现有的DSSL算法无法应对数据不确定性,并且可能遭受高计算和通信间接费用问题的困扰。为了解决这些问题,我们提出了一个分布式的半监督模糊回归(DSFR)模型,该模型具有模糊的规则和插值一致性正则化(ICR)。 ICR最近提出了针对半监督问题的问题,可以迫使决策边界通过稀疏的数据区域,从而增加模型的鲁棒性。但是,尚未考虑其在分布式方案中的应用。在这项工作中,我们提出了一种分布式模糊c均值(DFCM)方法和分布式插值一致性正则化(DICR)(DICR)构建在众所周知的乘数交替方向方法上,以分别定位DSFR的先行和结果组件中的参数。值得注意的是,DSFR模型的收敛很快,因为它不涉及后传播过程,并且可扩展到从DFCM和DICR利用中受益的大规模数据集。在人工和现实世界数据集上的实验结果表明,就损失价值和计算成本而言,提出的DSFR模型可以比最先进的DSSL算法取得更好的性能。
Recently, distributed semi-supervised learning (DSSL) algorithms have shown their effectiveness in leveraging unlabeled samples over interconnected networks, where agents cannot share their original data with each other and can only communicate non-sensitive information with their neighbors. However, existing DSSL algorithms cannot cope with data uncertainties and may suffer from high computation and communication overhead problems. To handle these issues, we propose a distributed semi-supervised fuzzy regression (DSFR) model with fuzzy if-then rules and interpolation consistency regularization (ICR). The ICR, which was proposed recently for semi-supervised problem, can force decision boundaries to pass through sparse data areas, thus increasing model robustness. However, its application in distributed scenarios has not been considered yet. In this work, we proposed a distributed Fuzzy C-means (DFCM) method and a distributed interpolation consistency regularization (DICR) built on the well-known alternating direction method of multipliers to respectively locate parameters in antecedent and consequent components of DSFR. Notably, the DSFR model converges very fast since it does not involve back-propagation procedure and is scalable to large-scale datasets benefiting from the utilization of DFCM and DICR. Experiments results on both artificial and real-world datasets show that the proposed DSFR model can achieve much better performance than the state-of-the-art DSSL algorithm in terms of both loss value and computational cost.