论文标题
拆卸的二进制动力图可以恢复量子通道的输入
Unraveling-paired dynamical maps can recover the input of quantum channels
论文作者
论文摘要
我们探讨了揭开一般时间内部主方程的代数和动态后果。我们表明,“影响力”是最近发现的拆卸框架的重要成分,将任何时间本地的主方程与一个lindblad-gorini-kossakowskowski-sudarshan master方程组成的一个参数家族配对。在任何时间的任何瞬间,影响力的差异都在配对主方程的解决方案之间的希尔伯特 - 雪橇距离上提供了上限。在影响力的方差上找到最低的上限,玛格代尔会产生“最佳配对”的明确标准。该标准独立检索了流动的结构物理近似所需的各向同性噪声的度量,其时间局部主方程式具有完全正面的流动。最佳配对还使我们能够在运算符(“交换表示”)上的线性图上调用一般结果,以将一般主方程的流动嵌入一个完全正面地图的非对角线角,从而依次求解我们明确确定的时间局限器主方程。我们使用嵌入将完全正面的进化(量子通道)逆转到其初始条件,从而提供了一种协议,以保护量子存储器,以抵抗逆转。因此,我们通过量子通道得出了连续时间误差校正的模型。
We explore algebraic and dynamical consequences of unraveling general time-local master equations. We show that the "influence martingale", the paramount ingredient of a recently discovered unraveling framework, pairs any time-local master equation with a one parameter family of Lindblad-Gorini-Kossakowski-Sudarshan master equations. At any instant of time, the variance of the influence martingale provides an upper bound on the Hilbert-Schmidt distance between solutions of paired master equations. Finding the lowest upper bound on the variance of the influence martingale yields an explicit criterion of "optimal pairing". The criterion independently retrieves the measure of isotropic noise necessary for the structural physical approximation of the flow the time-local master equation with a completely positive flow. The optimal pairing also allows us to invoke a general result on linear maps on operators (the "commutant representation") to embed the flow of a general master equation in the off-diagonal corner of a completely positive map which in turn solves a time-local master equation that we explicitly determine. We use the embedding to reverse a completely positive evolution, a quantum channel, to its initial condition thereby providing a protocol to preserve quantum memory against decoherence. We thus arrive at a model of continuous time error correction by a quantum channel.