论文标题

在有向图中计数路径

Counting paths in directed graphs

论文作者

Hajac, Piotr M., Stachowiak, Oskar M.

论文摘要

我们考虑具有$ n \ geq 1 $边缘的定向图类别,并且没有循环短于$ k $。使用标记图的概念,我们确定此类的图形,以最大程度地增加$ k $的所有路径的数量。然后,我们显示了该结果的$ r $标签版本,该版本对于非负实际数字的半度性$ r $包含,并包含非负合理数字​​的半度。最后,我们提出了一个相关的开放问题,该问题与$ n \ geq1 $边缘的无环图的路径代数的最大维度有关。

We consider the class of directed graphs with $N\geq 1$ edges and without loops shorter than $k$. Using the concept of a labelled graph, we determine graphs from this class that maximize the number of all paths of length $k$. Then we show an $R$-labelled version of this result for semirings $R$ contained in the semiring of non-negative real numbers and containing the semiring of non-negative rational numbers. We end by posing a related open problem concerning the maximal dimension of the path algebra of an acyclic graph with $N\geq1$ edges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源