论文标题

限制具有应用程序的混合声 - 序列序列空间的定理到体积分布

Limit theorems for mixed-norm sequence spaces with applications to volume distribution

论文作者

Juhos, Michael, Kabluchko, Zakhar, Prochno, Joscha

论文摘要

令$ p,q \ in(0,\ infty] $和$ \ ell_p^m(\ ell_q^n)$是真实矩阵的混合序列空间$ x =(x_ {i,j})_ {i \ leq m,j \ leq n} $ and(quas-qasi-quasi-) \ big \ vert \ big(\ vert(x_ {i,j})_ {j \ leq n} \ vert_q \ big)_ {i \ leq m} \ vert_p $。 $ \ ell_p^m(\ ell_q^n)$单位球$ \ mathbb {b} _ {p,q}^{m,n} $,并获得中央和非中央限制定理的$ \ ell_p(\ ell_p(\ ell_q)$ - 我们使用这些限制序列方法基于$ \ mathbb {b} _ {p,q}^{m,n} $上均匀分布的新概率表示。

Let $p, q \in (0, \infty]$ and $\ell_p^m(\ell_q^n)$ be the mixed-norm sequence space of real matrices $x = (x_{i, j})_{i \leq m, j \leq n}$ endowed with the (quasi-)norm $\Vert x \Vert_{p, q} := \big\Vert \big( \Vert (x_{i, j})_{j \leq n} \Vert_q \big)_{i \leq m} \Vert_p$. We shall prove a Poincaré-Maxwell-Borel lemma for suitably scaled matrices chosen uniformly at random in the $\ell_p^m(\ell_q^n)$ unit balls $\mathbb{B}_{p, q}^{m, n}$, and obtain both central and non-central limit theorems for their $\ell_p(\ell_q)$-norms. We use those limit theorems to study the asymptotic volume distribution in the intersection of two mixed-norm sequence balls. Our approach is based on a new probabilistic representation of the uniform distribution on $\mathbb{B}_{p, q}^{m, n}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源