论文标题
在2微米的波长中
High-performance, adiabatically nanotapered fibre-chip couplers in silicon at 2 microns wavelength
论文作者
论文摘要
光纤技术通过Internet连接世界,启用遥感并连接不同功能的光学设备。高度密闭的硅光子学有望极端尺度和功能整合。但是,硅纳米线波导和光纤的光学模式非常不同,这使得有效的纤维芯片耦合成为挑战。垂直光栅耦合器(如今的主要耦合方法)具有有限的光带宽,并且自然而然地脱离平面外。在这里,我们演示了一种新的方法,该方法是低损失,宽带,易于制造且自然平面的方法。我们绝热地将逐渐变细的硅纳米线波导与圆锥纳米体的光纤一起,测量2.0和2.2微米波长之间的传输。硅芯片是在商业铸造厂制造的,然后进行后处理以释放锥形纳米线。我们估计-0.48 dB的最佳每耦合传输(最大; 95%置信区间[+0.46,-1.68] dB)和1 -DB带宽为295 nm。通过自动测量值,我们量化了对横向错位的设备公差,测量+/- 0.968微米内的平坦响应。这种设计可以使集成光子学的低损耗模块化系统与材料和波段无关。
Fibre optic technology connects the world through the Internet, enables remote sensing, and connects disparate functional optical devices. Highly confined silicon photonics promises extreme scale and functional integration. However, the optical modes of silicon nanowire waveguides and optical fibres are very different, making efficient fibre-chip coupling a challenge. Vertical grating couplers, the dominant coupling method today, have limited optical bandwidth and are naturally out-of-plane. Here we demonstrate a new method that is low-loss, broadband, easily manufacturable, and naturally planar. We adiabatically couple a tapering silicon nanowire waveguide to a conic nanotapered optical fibre, measuring transmission between 2.0 and 2.2 micron wavelength. The silicon chip is fabricated at a commercial foundry and then post-processed to release the tapering nanowires. We estimate an optimal per-coupler transmission of -0.48 dB (maximum; 95% confidence interval [+0.46, -1.68] dB) and a 1-dB bandwidth of 295 nm . With automated measurements, we quantify the device tolerance to lateral misalignment, measuring a flat response within +/- 0.968 micron. This design can enable low-loss modular systems of integrated photonics irrespective of material and waveband.