论文标题

通过变压器神经网络预测的亚秒光子剂量

Sub-second photon dose prediction via transformer neural networks

论文作者

Pastor-Serrano, Oscar, Dong, Peng, Huang, Charles, Xing, Lei, Perkó, Zoltán

论文摘要

快速剂量计算对于在线和实时自适应疗法工作流程至关重要。尽管现代物理剂量算法必须损害准确性以达到较低的计算时间,但深度学习模型可以潜在地执行具有高忠诚和速度的剂量预测任务。我们提出了一种深入学习算法,该算法利用了变压器和卷积层之间的协同作用,可以准确地预测几毫秒的宽光子束剂量分布。提出的改进的剂量变压器算法(IDOTA)将任意患者的几何形状和梁信息(以简单的射线跟踪计算产生的3D投影形式形式)映射到其相应的3D剂量分布。 IDOTA将3D CT输入和剂量输出量作为沿光束束方向的2D切片的序列,将剂量预测任务求解为序列建模。所提出的模型将序列中所有元素之间的变压器主链路由长距离信息结合在一起,并与一系列3D卷积提取了数据的本地特征。我们使用11个临床体积调节弧治疗(VMAT)计划(来自前列腺,肺和头颈癌患者,每个计划的194-354束)使用11个临床体积调节弧治疗(VMAT)计划来训练IDOTA,以评估其准确性和速度。 IDOTA预测〜50毫秒的单个光子梁,高伽马通行率为97.72%(2 mm,2%)。此外,IDOTA在6-12秒内估算了完整的VMAT剂量分布,以99.51%(2 mm,2%)的通过率实现了最先进的性能。 IDOTA提供在线和实时自适应治疗中所需的次秒速度,代表了数据驱动的光子剂量计算中的新现状。提出的模型可以大规模加速电流光子工作流程,从而将计算时间从几分钟减少到仅几秒钟。

Fast dose calculation is critical for online and real time adaptive therapy workflows. While modern physics-based dose algorithms must compromise accuracy to achieve low computation times, deep learning models can potentially perform dose prediction tasks with both high fidelity and speed. We present a deep learning algorithm that, exploiting synergies between Transformer and convolutional layers, accurately predicts broad photon beam dose distributions in few milliseconds. The proposed improved Dose Transformer Algorithm (iDoTA) maps arbitrary patient geometries and beam information (in the form of a 3D projected shape resulting from a simple ray tracing calculation) to their corresponding 3D dose distribution. Treating the 3D CT input and dose output volumes as a sequence of 2D slices along the direction of the photon beam, iDoTA solves the dose prediction task as sequence modeling. The proposed model combines a Transformer backbone routing long-range information between all elements in the sequence, with a series of 3D convolutions extracting local features of the data. We train iDoTA on a dataset of 1700 beam dose distributions, using 11 clinical volumetric modulated arc therapy (VMAT) plans (from prostate, lung and head and neck cancer patients with 194-354 beams per plan) to assess its accuracy and speed. iDoTA predicts individual photon beams in ~50 milliseconds with a high gamma pass rate of 97.72% (2 mm, 2%). Furthermore, estimating full VMAT dose distributions in 6-12 seconds, iDoTA achieves state-of-the-art performance with a 99.51% (2 mm, 2%) pass rate. Offering the sub-second speed needed in online and real-time adaptive treatments, iDoTA represents a new state of the art in data-driven photon dose calculation. The proposed model can massively speed-up current photon workflows, reducing calculation times from few minutes to just a few seconds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源