论文标题
自适应3D网状造影基于特征的变形
Adaptive 3D Mesh Steganography Based on Feature-Preserving Distortion
论文作者
论文摘要
基于几何修饰的3D网状志志算法容易受到3D剥离器的影响。在本文中,我们提出了一个基于特征性变形(FPD)的高度适应性3D网状地理摄影,该术保证了高嵌入能力,同时有效抵抗了3D稳定分析。具体而言,我们首先将顶点坐标转换为整数,并从它们中得出比特平板以构建嵌入域。为了更好地衡量消息嵌入引起的网格失真,我们根据最先进的地结肠分析特征集的最有效的子功能提出了FPD。通过改善和最小化FPD,我们可以在一定程度上有效地计算最佳的顶点变化分布,并同时保留网格特征,例如地分析和几何特征。借助最佳分布,我们采用Q层综合征格子编码(STC)来嵌入实际消息。但是,当Q变化时,计算Q层中每一层中的位修改概率(BMP)会很麻烦。因此,我们偶尔设计一种通用和自动的BMP计算方法。广泛的实验结果表明,所提出的算法在抵抗3D踩踏分析方面优于大多数最先进的3D网状造影算法。
3D mesh steganographic algorithms based on geometric modification are vulnerable to 3D steganalyzers. In this paper, we propose a highly adaptive 3D mesh steganography based on feature-preserving distortion (FPD), which guarantees high embedding capacity while effectively resisting 3D steganalysis. Specifically, we first transform vertex coordinates into integers and derive bitplanes from them to construct the embedding domain. To better measure the mesh distortion caused by message embedding, we propose FPD based on the most effective sub-features of the state-of-the-art steganalytic feature set. By improving and minimizing FPD, we can efficiently calculate the optimal vertex-changing distribution and simultaneously preserve mesh features, such as steganalytic and geometric features, to a certain extent. By virtue of the optimal distribution, we adopt the Q-layered syndrome trellis coding (STC) for practical message embedding. However, when Q varies, calculating bit modification probability (BMP) in each layer of Q-layered will be cumbersome. Hence, we contrapuntally design a universal and automatic BMP calculation approach. Extensive experimental results demonstrate that the proposed algorithm outperforms most state-of-the-art 3D mesh steganographic algorithms in terms of resisting 3D steganalysis.