论文标题

多维持续分数的组合特性

Combinatorial properties of multidimensional continued fractions

论文作者

Battagliola, Michele, Murru, Nadir, Santilli, Giordano

论文摘要

数学对象组合特性的研究是一个非常重要的研究领域,从这个意义上讲,对持续的部分进行了深入研究。然而,多维持续分数是由雅各比引起的算法引起的概括,到目前为止,已经对这种意义进行了很少的研究。在本文中,我们提出了对多维持续分数收敛的组合解释,以计算一些特定的瓷砖,从而推广了一些对经典持续分数的结果。

The study of combinatorial properties of mathematical objects is a very important research field and continued fractions have been deeply studied in this sense. However, multidimensional continued fractions, which are a generalization arising from an algorithm due to Jacobi, have been poorly investigated in this sense, up to now. In this paper, we propose a combinatorial interpretation of the convergents of multidimensional continued fractions in terms of counting some particular tilings, generalizing some results that hold for classical continued fractions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源