论文标题

自我监督学习模型的几何形状及其对转移学习的影响

The Geometry of Self-supervised Learning Models and its Impact on Transfer Learning

论文作者

Cosentino, Romain, Shekkizhar, Sarath, Soltanolkotabi, Mahdi, Avestimehr, Salman, Ortega, Antonio

论文摘要

自我监督的学习(SSL)由于无法监督的模型学习可以在具有有限标签的域中概括的表示表示形式而成为计算机视觉中理想的范式。 SSL的最新知名度导致了几种模型的开发,这些模型利用了不同的培训策略,架构和数据增强政策,而没有现有的统一框架来研究或评估其在转移学习中的有效性。我们提出了一种数据驱动的几何策略,使用每个局部诱导的特征空间中的局部社区分析不同的SSL模型。与考虑参数,单个组件或优化领域的数学近似的现有方法不同,我们的工作旨在探索SSL模型所学的表示歧管的几何特性。我们提出的歧管图指标(MGM)提供了有关可用SSL模型之间的几何相似性和差异的见解,它们相对于特定的增强量以及它们在转移学习任务方面的表现。我们的关键发现是两个方面:(i)与普遍的看法相反,SSL模型的几何形状与其训练范式(对比,非对抗性和基于群集)并不相关; (ii)我们可以基于其语义和增强歧管的几何特性来预测特定模型的传递能力。

Self-supervised learning (SSL) has emerged as a desirable paradigm in computer vision due to the inability of supervised models to learn representations that can generalize in domains with limited labels. The recent popularity of SSL has led to the development of several models that make use of diverse training strategies, architectures, and data augmentation policies with no existing unified framework to study or assess their effectiveness in transfer learning. We propose a data-driven geometric strategy to analyze different SSL models using local neighborhoods in the feature space induced by each. Unlike existing approaches that consider mathematical approximations of the parameters, individual components, or optimization landscape, our work aims to explore the geometric properties of the representation manifolds learned by SSL models. Our proposed manifold graph metrics (MGMs) provide insights into the geometric similarities and differences between available SSL models, their invariances with respect to specific augmentations, and their performances on transfer learning tasks. Our key findings are two fold: (i) contrary to popular belief, the geometry of SSL models is not tied to its training paradigm (contrastive, non-contrastive, and cluster-based); (ii) we can predict the transfer learning capability for a specific model based on the geometric properties of its semantic and augmentation manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源