论文标题
基于耦合波导的绝热优化的超宽带集成的光学滤波器
Ultra-broadband integrated optical filters based on adiabatic optimization of coupled waveguides
论文作者
论文摘要
在许多集成的光子应用中,宽带光谱过滤器是高度渴望的,例如超宽带波长施加多路复用,多波段光谱和宽带传感。在这项研究中,我们介绍了带有绝热波导的紧凑型和超宽带硅光子过滤器的设计,模拟和实验证明。我们首先为耦合的绝热波导结构开发了一种优化算法,并使用它来设计单个单切光谱过滤器。这些单切滤波器是1x2端口设备,可在指定的设备长度内最佳地将宽带信号分为短通路和长通量输出。我们使用绝热参数控制这些过滤器中的功率滚动和灭绝率。过滤器的两个输出在变速箱中都可以运行,从而使以不同配置的多个过滤器级联成为可能。利用这种灵活性,我们在芯片上级联了两个具有不同截止波长的过滤器,并在实验中证明了带通路的操作。这些频带边缘的独立而灵活的设计使带宽超过100 nm的过滤器。在实验上,我们演示了带带带的带通滤波器,范围从6.4 nm到96.6 nm。我们的设备在所有三个短通,带通路和长通式输出中实现了平坦的传输,其插入损失少于1.5 dB,而灭绝比为15 dB以上。这些超宽带滤波器可以为通信,光谱和传感应用中的多波段集成光子学提供新的功能。
Broadband spectral filters are highly sought-after in many integrated photonics applications such as ultra-broadband wavelength division multiplexing, multi-band spectroscopy, and broadband sensing. In this study, we present the design, simulation, and experimental demonstration of compact and ultra-broadband silicon photonic filters with adiabatic waveguides. We first develop an optimization algorithm for coupled adiabatic waveguide structures, and use it to design individual, single-cutoff spectral filters. These single-cutoff filters are 1x2 port devices that optimally separate a broadband signal into short-pass and long-pass outputs, within a specified device length. We control the power roll-off and extinction ratio in these filters using the adiabaticity parameter. Both outputs of the filters operate in transmission, making it possible to cascade multiple filters in different configurations. Taking advantage of this flexibility, we cascade two filters with different cutoff wavelengths on-chip, and experimentally demonstrate band-pass operation. The independent and flexible design of these band edges enables filters with bandwidths well over 100 nm. Experimentally, we demonstrate band-pass filters with passbands ranging from 6.4 nm up to 96.6 nm. Our devices achieve flat-band transmission in all three of the short-pass, band-pass, and long-pass outputs with less than 1.5 dB insertion loss and extinction ratios of over 15 dB. These ultra-broadband filters can enable new capabilities for multi-band integrated photonics in communications, spectroscopy, and sensing applications.