论文标题

流量模型跨越的SR空间中的感知折叠权衡

Perception-Distortion Trade-off in the SR Space Spanned by Flow Models

论文作者

Korkmaz, Cansu, Tekalp, A. Murat, Dogan, Zafer, Erdem, Erkut, Erdem, Aykut

论文摘要

基于流量的生成超分辨率(SR)模型学会生产一套可行的SR解决方案,称为SR空间。 SR溶液的多样性随着潜在变量的温度($τ$)而增加,这引入了样品溶液之间纹理的随机变化,从而导致视觉伪像和低忠诚度。在本文中,我们提出了一种简单但有效的图像结合/融合方法,以获得消除随机伪像的单个SR图像,并改善忠诚度,而不会显着损害感知质量。我们通过从流量模型跨越的SR空间中的一系列可行的光真实解决方案中受益,从而实现了这一目标。我们提出了不同的图像结合和融合策略,这些策略提供了多种途径,可以将SR空间中的样本解决方案移至感知流平面中更需要的目的地,以可控的方式,具体取决于手头任务的忠诚度与感知质量要求。实验结果表明,与流量模型和经过对抗训练的模型所产生的样本SR图像相比,我们的图像结合/融合策略在定量指标和视觉质量方面实现了更有前途的感知依赖权衡。

Flow-based generative super-resolution (SR) models learn to produce a diverse set of feasible SR solutions, called the SR space. Diversity of SR solutions increases with the temperature ($τ$) of latent variables, which introduces random variations of texture among sample solutions, resulting in visual artifacts and low fidelity. In this paper, we present a simple but effective image ensembling/fusion approach to obtain a single SR image eliminating random artifacts and improving fidelity without significantly compromising perceptual quality. We achieve this by benefiting from a diverse set of feasible photo-realistic solutions in the SR space spanned by flow models. We propose different image ensembling and fusion strategies which offer multiple paths to move sample solutions in the SR space to more desired destinations in the perception-distortion plane in a controllable manner depending on the fidelity vs. perceptual quality requirements of the task at hand. Experimental results demonstrate that our image ensembling/fusion strategy achieves more promising perception-distortion trade-off compared to sample SR images produced by flow models and adversarially trained models in terms of both quantitative metrics and visual quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源