论文标题
用惯性和热涡流的多尺度热传输
Multiscale heat transport with inertia and thermal vortices
论文作者
论文摘要
在本文中,我们在各种描述层面上提出了热量传输的哈密顿和热力学理论。热的传输是在极化声子的动力学理论,非极化声子的动力学理论中制定的,极化声子的流体动力学以及非极化声子的流体动力学。这些各种级别的描述与泊松减少相关,没有进行线性化。因此,我们获得了一个新的声子流体动力学,其中包含取决于热通量涡度的对流术语,这在声子流体动力学的标准理论中缺少。此外,这些方程是双曲线和伽利利亚不变的,与当前的高温传输理论不同。涡度依赖性术语违反了热通量与温度梯度的比对,即使在固定状态下,这是由傅立叶 - 沟口方程表示的。新术语还导致温度在热传输中的作用与空气动力学中的压力相似。
In this paper, we present a Hamiltonian and thermodynamic theory of heat transport on various levels of description. Transport of heat is formulated within kinetic theory of polarized phonons, kinetic theory of unpolarized phonons, hydrodynamics of polarized phonons, and hydrodynamics of unpolarized phonons. These various levels of description are linked by Poisson reductions, where no linearizations are made. Consequently, we obtain a new phonon hydrodynamics that contains convective terms dependent on vorticity of the heat flux, which are missing in the standard theories of phonon hydrodynamics. Moreover, the equations are hyperbolic and Galilean invariant, unlike current theories for beyond-Fourier heat transport. The vorticity-dependent terms violate the alignment of the heat flux with the temperature gradient even in the stationary state, which is expressed by a Fourier-Crocco equation. The new terms also cause that temperature plays in heat transport a similar role as pressure in aerodynamics.