论文标题

通过核心和凸几何修剪神经网络:没有假设

Pruning Neural Networks via Coresets and Convex Geometry: Towards No Assumptions

论文作者

Tukan, Murad, Mualem, Loay, Maalouf, Alaa

论文摘要

修剪是压缩深神经网络(DNN)的主要方法之一。最近,将核(可证明的数据汇总)用于修剪DNN,并增加了理论保证在压缩率和近似误差之间的权衡方面的优势。但是,该域中的核心是数据依赖性的,要么是在模型的权重和输入的限制性假设下生成的。在实际情况下,这种假设很少得到满足,从而限制了核心的适用性。为此,我们建议一个新颖而健壮的框架,用于计算模型权重的轻度假设,而没有对训练数据的任何假设。这个想法是计算每个层中每个神经元相对于以下一层输出的重要性。这是通过Löwner椭圆形和Caratheodory定理的结合来实现的。我们的方法同时独立于数据,适用于各种网络和数据集(由于简化的假设),并在理论上支持。实验结果表明,我们的方法在广泛的网络和数据集上优于现有的基于核心的神经修剪方法。例如,我们的方法以$ 1.09 \%$的准确度下降了ImageNet上的Resnet50 $ 62 \%$压缩率。

Pruning is one of the predominant approaches for compressing deep neural networks (DNNs). Lately, coresets (provable data summarizations) were leveraged for pruning DNNs, adding the advantage of theoretical guarantees on the trade-off between the compression rate and the approximation error. However, coresets in this domain were either data-dependent or generated under restrictive assumptions on both the model's weights and inputs. In real-world scenarios, such assumptions are rarely satisfied, limiting the applicability of coresets. To this end, we suggest a novel and robust framework for computing such coresets under mild assumptions on the model's weights and without any assumption on the training data. The idea is to compute the importance of each neuron in each layer with respect to the output of the following layer. This is achieved by a combination of Löwner ellipsoid and Caratheodory theorem. Our method is simultaneously data-independent, applicable to various networks and datasets (due to the simplified assumptions), and theoretically supported. Experimental results show that our method outperforms existing coreset based neural pruning approaches across a wide range of networks and datasets. For example, our method achieved a $62\%$ compression rate on ResNet50 on ImageNet with $1.09\%$ drop in accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源