论文标题

并行窗口解码启用可扩展的容错量子计算

Parallel window decoding enables scalable fault tolerant quantum computation

论文作者

Skoric, Luka, Browne, Dan E., Barnes, Kenton M., Gillespie, Neil I., Campbell, Earl T.

论文摘要

大规模量子计算机有可能在传统计算机以外的某些问题以外保持计算能力。但是,量子计算机中的物理量楼容易容易噪声和变形,必须纠正,以执行可靠的,容忍故障的量子计算。量子误差校正(QEC)提供了实现此类计算的路径。 QEC连续生成连续的数据流,该数据流必须以收到的速率进行处理,在超导量子计算机中,该数据的速度可能与1 MHz一样快。 QEC的一个鲜为人知的事实是,如果解码器基础架构无法跟上,则遇到数据积压问题,并且量子计算机的运行速度较慢。当今的量子误差校正方法无法扩展,因为现有解码器通常会随着问题大小的增加而慢,不可避免地会遇到积压问题。也就是说:当前的易于故障量子计算的领先提议是不可扩展的。在这里,我们展示了如何并行化解码以达到几乎任意的速度,从而消除了可扩展性的障碍。我们的并行化需要延迟一些经典的饲料远期决策,从而导致逻辑时钟速度的降低。但是,减速仅在代码大小上仅是多项式,从而避免了指数降低。我们在数值上证明了表面代码的并行解码器,与以前的解码器相比,逻辑保真度并未明显降低,并证明了并行化的速度。

Large-scale quantum computers have the potential to hold computational capabilities beyond conventional computers for certain problems. However, the physical qubits within a quantum computer are prone to noise and decoherence, which must be corrected in order to perform reliable, fault-tolerant quantum computations. Quantum Error Correction (QEC) provides the path for realizing such computations. QEC continuously generates a continuous stream of data that decoders must process at the rate it is received, which can be as fast as 1 MHz in superconducting quantum computers. A little known fact of QEC is that if the decoder infrastructure cannot keep up, a data backlog problem is encountered and the quantum computer runs exponentially slower. Today's leading approaches to quantum error correction are not scalable as existing decoders typically run slower as the problem size is increased, inevitably hitting the backlog problem. That is: the current leading proposal for fault-tolerant quantum computation is not scalable. Here, we show how to parallelize decoding to achieve almost arbitrary speed, removing this roadblock to scalability. Our parallelization requires some classical feed forward decisions to be delayed, leading to a slow-down of the logical clock speed. However, the slow-down is now only polynomial in code size, averting the exponential slowdown. We numerically demonstrate our parallel decoder for the surface code, showing no noticeable reduction in logical fidelity compared to previous decoders and demonstrating the parallelization speedup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源