论文标题

LCA组的矩阵值GABOR框架用于操作员

Matrix-Valued Gabor Frames over LCA Groups for Operators

论文作者

Jyoti, Vashisht, Lalit Kumar, Sinha, Uttam Kumar

论文摘要

g \ v avruta研究了原子系统的框架(即子空间),即$ k $ frames,其中较低的帧条件由有限的线性运算符$ k $的Hilbert-Adxoint控制。对于局部紧凑的Abelian G组和一个积极的整数$ n $,我们在矩阵值lebesgue space $ l^2(g,\ mathbb {c}^{c}^{n \ times n})$中研究矩阵值的gabor系统框架N})$控制不仅较低,而且控制上限条件。我们称此类帧矩阵价态$(θ,θ^*)$ - gabor框架。首先,我们讨论从不正常运算符方面保存映射的框架。其次,我们为存在矩阵值$(θ,θ^*)$ - Gabor帧的存在提供了必要的条件。结果表明,如果$θ$是可相邻的不正常运算符,则$ l^2(g,\ mathbb {c}^{n \ times n})$允许A $λ$ -Tight $(θ,θ^*)$ - GABOR $ - GABOR $ - GABOR的每个正数$λ$。给出了矩阵值$(θ,θ^*)$ - Gabor帧的表征。最后,我们表明矩阵值$(θ,θ^*)$ - Gabor帧在窗口函数的小扰动下是稳定的。给出了几个例子来支持我们的研究。

G\v avruta studied atomic systems in terms of frames for range of operators (that is, for subspaces), namely $K$-frames, where the lower frame condition is controlled by the Hilbert-adjoint of a bounded linear operator $K$. For a locally compact abelian group G and a positive integer $n$, we study frames of matrix-valued Gabor systems in the matrix-valued Lebesgue space $L^2(G, \mathbb{C}^{n\times n})$ , where a bounded linear operator $Θ$ on $L^2(G, \mathbb{C}^{n\times n})$ controls not only lower but also the upper frame condition. We term such frames matrix-valued $(Θ, Θ^*)$-Gabor frames. Firstly, we discuss frame preserving mapping in terms of hyponormal operators. Secondly, we give necessary and sufficient conditions for the existence of matrix-valued $(Θ, Θ^*)$- Gabor frames in terms of hyponormal operators. It is shown that if $Θ$ is adjointable hyponormal operator, then $L^2(G, \mathbb{C}^{n\times n})$ admits a $λ$-tight $(Θ, Θ^*)$-Gabor frame for every positive real number $λ$. A characterization of matrix-valued $(Θ, Θ^*)$-Gabor frames is given. Finally, we show that matrix-valued $(Θ, Θ^*)$-Gabor frames are stable under small perturbation of window functions. Several examples are given to support our study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源