论文标题
通过机器学习从本地信息中测量量子纠缠
Measuring Quantum Entanglement from Local Information by Machine Learning
论文作者
论文摘要
纠缠是量子技术发展和量子多体模拟研究的关键特性。但是,纠缠测量通常需要量子全州断层扫描(FST)。在这里,我们提出了一种神经网络辅助方案,用于测量当地哈密顿量的平衡和非平衡状态的纠缠。它可以从单位或两分的Pauli测量值中学习全面的纠缠数量,例如Rényi熵,部分转移(PT)矩(PT)矩和连贯性,而不是FST。令人兴奋的是,我们的神经网络能够仅使用前一次的单量形痕迹来学习未来的纠缠动态。此外,我们使用核自旋量子处理器执行实验,并训练一个产神网络,以研究一维自旋链的地面和动态状态的纠缠。量子相变(QPT)是通过测量地面状态的静态纠缠来揭示的,并且在动力状态下可以准确估算超出测量时间的纠缠动态。这些精确的结果验证了我们的神经网络。我们的工作将在量子多体系统中具有广泛的应用,从量子相变到有趣的非平衡现象,例如量子热化。
Entanglement is a key property in the development of quantum technologies and in the study of quantum many-body simulations. However, entanglement measurement typically requires quantum full-state tomography (FST). Here we present a neural network-assisted protocol for measuring entanglement in equilibrium and non-equilibrium states of local Hamiltonians. Instead of FST, it can learn comprehensive entanglement quantities from single-qubit or two-qubit Pauli measurements, such as Rényi entropy, partially-transposed (PT) moments, and coherence. It is also exciting that our neural network is able to learn the future entanglement dynamics using only single-qubit traces from the previous time. In addition, we perform experiments using a nuclear spin quantum processor and train an adoptive neural network to study entanglement in the ground and dynamical states of a one-dimensional spin chain. Quantum phase transitions (QPT) are revealed by measuring static entanglement in ground states, and the entanglement dynamics beyond measurement time is accurately estimated in dynamical states. These precise results validate our neural network. Our work will have a wide range of applications in quantum many-body systems, from quantum phase transitions to intriguing non-equilibrium phenomena such as quantum thermalization.