论文标题

层次模糊神经网络具有非均质大数据的隐私保护

Hierarchical fuzzy neural networks with privacy preservation for heterogeneous big data

论文作者

Zhang, Leijie, Shi, Ye, Chang, Yu-Cheng, Lin, Chin-Teng

论文摘要

异质的大数据在机器学习中构成了许多挑战。它的巨大规模,高维度和固有的不确定性使机器学习的几乎每个方面都变得困难,从提供足够的处理能力到维持模型准确性来保护隐私。但是,也许最引人注目的问题是,大数据通常散布在敏感的个人数据中。因此,我们提出了一个保护隐私的层次模糊神经网络(PP-HFNN),以应对这些技术挑战,同时也减轻了隐私问题。该网络是通过两阶段优化算法训练的,并且基于众所周知的交替乘数方法的方案,在层次结构低级别的参数中学习,这不会向其他代理揭示本地数据。高级层次结构的协调通过交替优化方法来处理,该方法的收敛很快。整个训练程序都是可扩展的,快速的,并且不会遭受基于后传播的方法等梯度消失的问题。对回归和分类任务进行的综合模拟证明了所提出的模型的有效性。

Heterogeneous big data poses many challenges in machine learning. Its enormous scale, high dimensionality, and inherent uncertainty make almost every aspect of machine learning difficult, from providing enough processing power to maintaining model accuracy to protecting privacy. However, perhaps the most imposing problem is that big data is often interspersed with sensitive personal data. Hence, we propose a privacy-preserving hierarchical fuzzy neural network (PP-HFNN) to address these technical challenges while also alleviating privacy concerns. The network is trained with a two-stage optimization algorithm, and the parameters at low levels of the hierarchy are learned with a scheme based on the well-known alternating direction method of multipliers, which does not reveal local data to other agents. Coordination at high levels of the hierarchy is handled by the alternating optimization method, which converges very quickly. The entire training procedure is scalable, fast and does not suffer from gradient vanishing problems like the methods based on back-propagation. Comprehensive simulations conducted on both regression and classification tasks demonstrate the effectiveness of the proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源