论文标题
Tode-Trans:带有变压器的透明对象深度估计
TODE-Trans: Transparent Object Depth Estimation with Transformer
论文作者
论文摘要
透明的物体广泛用于工业自动化和日常生活中。但是,强大的视觉识别和对透明物体的感知一直是一个主要挑战。目前,由于光的折射和反射,大多数商用级深度摄像机仍然不擅长感知透明物体的表面。在这项工作中,我们从单个RGB-D输入中提出了一种基于变压器的透明对象深度估计方法。我们观察到,变压器的全球特征使提取上下文信息更容易对透明区域进行深度估算。此外,为了更好地增强细粒度的特征,功能融合模块(FFM)旨在帮助连贯的预测。我们的经验证据表明,与以前的最新基于卷积的数据集中的同行相比,我们的模型在最近的流行数据集中有了重大改进,例如RMSE增长25%,RER增长了21%。广泛的结果表明,我们的基于变压器的模型可以更好地汇总对象的RGB和不准确的深度信息,以获得更好的深度表示。我们的代码和预培训模型将在https://github.com/yuchendoudou/tode上找到。
Transparent objects are widely used in industrial automation and daily life. However, robust visual recognition and perception of transparent objects have always been a major challenge. Currently, most commercial-grade depth cameras are still not good at sensing the surfaces of transparent objects due to the refraction and reflection of light. In this work, we present a transformer-based transparent object depth estimation approach from a single RGB-D input. We observe that the global characteristics of the transformer make it easier to extract contextual information to perform depth estimation of transparent areas. In addition, to better enhance the fine-grained features, a feature fusion module (FFM) is designed to assist coherent prediction. Our empirical evidence demonstrates that our model delivers significant improvements in recent popular datasets, e.g., 25% gain on RMSE and 21% gain on REL compared to previous state-of-the-art convolutional-based counterparts in ClearGrasp dataset. Extensive results show that our transformer-based model enables better aggregation of the object's RGB and inaccurate depth information to obtain a better depth representation. Our code and the pre-trained model will be available at https://github.com/yuchendoudou/TODE.