论文标题

设计实验条件以使用Lotka-Volterra模型推断肿瘤细胞系相互作用类型

Designing experimental conditions to use the Lotka-Volterra model to infer tumor cell line interaction types

论文作者

Cho, Heyrim, Lewis, Allison L., Storey, Kathleen M., Byrne, Helen M.

论文摘要

Lotka-Volterra模型被广泛用于建模两个物种之间的相互作用。在这里,我们生成的合成数据模仿了两个肿瘤细胞系之间的竞争性,相互和拮抗性相互作用,然后使用Lotka-Volterra模型来推断相互作用类型。确认了Lotka-Volterra模型的结构可识别性,并评估了三种实验设计的实际可识别性:(a)使用单个数据集,两种细胞系的混合物随着时间的推移而观察到的两个细胞系的混合物,(b)在每个细胞系中估算了一个依赖隔离参数的数据,并估算了一个顺序设计,并在隔离中估算了一个隔离的参数。线,(c)平行的实验设计,其中所有模型参数均拟合到同时来自两个混合物的数据。除了评估每种设计以确定性可识别性外,我们还研究了模型I.e的预测能力如何,其能够拟合数据的能力,而不是通过实验设计的选择影响其校准的初始比率。发现并行校准过程是最佳的,并在从空间分辨的细胞自动机模型中产生的硅数据中进一步测试,该模型解释了氧的消耗,并允许两种细胞系之间相互作用的强度水平变化。我们使用这项研究来强调在解释空间平均的Lotka-Volterra模型时必须采取的谨慎,因为它对由空间分辨的细胞自动机模型所产生的数据进行校准,因为CA在CA模型中的基线竞争可能会导致ca模型中使用的互动类型,以生成CA互动的类型,并产生了CAD数据的类型。

The Lotka-Volterra model is widely used to model interactions between two species. Here, we generate synthetic data mimicking competitive, mutualistic and antagonistic interactions between two tumor cell lines, and then use the Lotka-Volterra model to infer the interaction type. Structural identifiability of the Lotka-Volterra model is confirmed, and practical identifiability is assessed for three experimental designs: (a) use of a single data set, with a mixture of both cell lines observed over time, (b) a sequential design where growth rates and carrying capacities are estimated using data from experiments in which each cell line is grown in isolation, and then interaction parameters are estimated from an experiment involving a mixture of both cell lines, and (c) a parallel experimental design where all model parameters are fitted to data from two mixtures simultaneously. In addition to assessing each design for practical identifiability, we investigate how the predictive power of the model-i.e., its ability to fit data for initial ratios other than those to which it was calibrated-is affected by the choice of experimental design. The parallel calibration procedure is found to be optimal and is further tested on in silico data generated from a spatially-resolved cellular automaton model, which accounts for oxygen consumption and allows for variation in the intensity level of the interaction between the two cell lines. We use this study to highlight the care that must be taken when interpreting parameter estimates for the spatially-averaged Lotka-Volterra model when it is calibrated against data produced by the spatially-resolved cellular automaton model, since baseline competition for space and resources in the CA model may contribute to a discrepancy between the type of interaction used to generate the CA data and the type of interaction inferred by the LV model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源