论文标题
基于差异域的基于趋化域的数值方法,用于趋化模型
A Diffuse-Domain Based Numerical Method for a Chemotaxis-Fluid Model
论文作者
论文摘要
在本文中,我们考虑了一个耦合的趋化性液体系统,该系统模拟了无柄滴剂中催产细菌的自组织集体行为。该模型描述了流体环境中的生物趋化现象,并将对流的趋化性趋化性系统与不可压缩的Navier-Stokes方程式相结合,以与水密度相比,与细胞密度相对相对剩余相对差异。 我们为研究的趋化性流体系统开发了一种新的阳性和高分辨率方法。我们的方法基于弥漫性域方法,我们用来得出一种新的趋化性 - 流体弥漫性域(CF-DD)模型,用于模拟复杂几何形状中的生物构度。将滴域嵌入到较大的矩形域中,原始边界被有限厚度的扩散界面所取代。原始的趋化性流体系统在较大的域上进行了重新制定,并具有近似物理界面边界条件的其他源术语。我们表明,CF-DD模型渐近地收敛到趋化 - 流体模型,因为扩散界面的宽度缩小到零。我们通过二阶杂交有限量有限差异方法来数字求解所得的CF-DD系统,并证明了在许多数值实验上提出的方法的性能,这些实验在许多数值实验上展示了几种有趣的化学词性现象,在不同形状的静态滴剂中,细菌模式取决于液滴的差异。
In this paper, we consider a coupled chemotaxis-fluid system that models self-organized collective behavior of oxytactic bacteria in a sessile drop. This model describes the biological chemotaxis phenomenon in the fluid environment and couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier-Stokes equations subject to a gravitational force, which is proportional to the relative surplus of the cell density compared to the water density. We develop a new positivity preserving and high-resolution method for the studied chemotaxis-fluid system. Our method is based on the diffuse-domain approach, which we use to derive a new chemotaxis-fluid diffuse-domain (cf-DD) model for simulating bioconvection in complex geometries. The drop domain is imbedded into a larger rectangular domain, and the original boundary is replaced by a diffuse interface with finite thickness. The original chemotaxis-fluid system is reformulated on the larger domain with additional source terms that approximate the boundary conditions on the physical interface. We show that the cf-DD model converges to the chemotaxis-fluid model asymptotically as the width of the diffuse interface shrinks to zero. We numerically solve the resulting cf-DD system by a second-order hybrid finite-volume finite-difference method and demonstrate the performance of the proposed approach on a number of numerical experiments that showcase several interesting chemotactic phenomena in sessile drops of different shapes, where the bacterial patterns depend on the droplet geometries.