论文标题
加权组代数的较弱的舒适性
Weak amenability of weighted group algebras
论文作者
论文摘要
在本文中,我们研究了代数的弱舒适性。为此,我们介绍了概念内的准添加函数,并证明对于本地紧凑的$ g $,Banach代数$ l^1(g,ω)$在且仅当每个非inner quasi-quasi addive in $ l^\ iffty(g ins g,g,1/ω)中都是弱的。这为问题提供了一个关于$ l^1(g,ω)$的弱舒适性的问题,并改善了与之相关的一些已知结果。
In this paper, we study weak amenability of Beurling algebras. To this end, we introduce the notion inner quasi-additive functions and prove that for a locally compact group $G$, the Banach algebra $L^1(G, ω)$ is weakly amenable if and only if every non-inner quasi-additive function in $L^\infty(G, 1/ω)$ is unbounded. This provides an answer to the question concerning weak amenability of $L^1(G, ω)$ and improve some known results in connection with it.