论文标题
在重复测量设计中从汇总统计数据计算分析贝叶斯因素
Computing analytic Bayes factors from summary statistics in repeated-measures designs
论文作者
论文摘要
贝叶斯因素是越来越流行的工具,用于从实验中索引证据。对于两个相互竞争的人群模型,贝叶斯因子反映了与另一个模型相比,在一个模型下观察某些数据的相对可能性。通常,计算贝叶斯因子很困难,因为计算每个模型的边际可能性需要整合可能性的乘积和在人口参数上的先前分布。在本文中,我们开发了一种新的分析公式,用于直接从重复测量设计中的最小汇总统计数据中计算贝叶斯因素。这项工作是对以前从摘要统计数据(例如BIC方法)计算贝叶斯因素的方法的改进,该方法产生了违反较小样本量的证据的贝叶斯因素。本文中采用的新方法需要仅知道$ f $统计和自由度,这两者在大多数经验工作中通常都有报道。除了提供计算示例外,我们还报告了一项模拟研究,该研究将新公式基准根据重复测量设计中计算贝叶斯因素的其他方法进行基准测试。我们的新方法为研究人员提供了一种简单的方法,可以直接从最小的摘要统计数据中计算贝叶斯因素,从而使用户可以为自己数据的证据价值以及已发表的研究中报告的数据索引。
Bayes factors are an increasingly popular tool for indexing evidence from experiments. For two competing population models, the Bayes factor reflects the relative likelihood of observing some data under one model compared to the other. In general, computing a Bayes factor is difficult, because computing the marginal likelihood of each model requires integrating the product of the likelihood and a prior distribution on the population parameter(s). In this paper, we develop a new analytic formula for computing Bayes factors directly from minimal summary statistics in repeated-measures designs. This work is an improvement on previous methods for computing Bayes factors from summary statistics (e.g., the BIC method), which produce Bayes factors that violate the Sellke upper bound of evidence for smaller sample sizes. The new approach taken in this paper extends requires knowing only the $F$-statistic and degrees of freedom, both of which are commonly reported in most empirical work. In addition to providing computational examples, we report a simulation study that benchmarks the new formula against other methods for computing Bayes factors in repeated-measures designs. Our new method provides an easy way for researchers to compute Bayes factors directly from a minimal set of summary statistics, allowing users to index the evidential value of their own data, as well as data reported in published studies.