论文标题

一类有序代数等效于多端gebras的类别

A Category of Ordered Algebras Equivalent to the Category of Multialgebras

论文作者

Coniglio, Marcelo E., Toledo, Guilherme V.

论文摘要

众所周知,集合与完整的原子布尔代数(CABA)之间有一个对应关系,将集合置于其功率集,并相互地,是完整的原子布尔代数到其一组原子元素。当然,这种对应关系诱导了$ \ textbf {set} $的相对类别与CABA的类别之间的等价性。我们通过将多零件在签名$σ$上取出,特别是那些非确定操作无法返回空定点的签名$σ$,并删除其零元素的CABA和与订单兼容的$σ$ -SELGEBRA的结构;相互,其中一个“几乎布尔” $σ$ -Algebras被带到其一组原子元素,该原子元素配备了超过$σ$的多级结构。这导致了$σ$ - 万格拉斯的类别与有序的$σ$ - 代理类别之间的等价性。在这里,直觉是,如果一个人希望这样做,那么非确定性可能会被基本结构的足够丰富的顺序取代。

It is well known that there is a correspondence between sets and complete, atomic Boolean algebras (CABA's) taking a set to its power-set and, reciprocally, a complete, atomic Boolean algebra to its set of atomic elements. Of course, such a correspondence induces an equivalence between the opposite category of $\textbf{Set}$ and the category of CABA's. We extend this result by taking multialgebras over a signature $Σ$, specifically those whose non-deterministic operations cannot return the empty-set, to CABA's with their zero element removed and a structure of $Σ$-algebra compatible with its order; reciprocally, one of these "almost Boolean" $Σ$-algebras is taken to its set of atomic elements equipped with a structure of multialgebra over $Σ$. This leads to an equivalence between the category of $Σ$-multialgebras and a category of ordered $Σ$-algebras. The intuition, here, is that if one wishes to do so, non-determinism may be replaced by a sufficiently rich ordering of the underlying structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源