论文标题
使用SCAMPI提高无数据库MRI采样的质量和速度
Enhancing quality and speed in database-free neural network reconstructions of undersampled MRI with SCAMPI
论文作者
论文摘要
目的:我们提出了SCAMPI(深度磁共振先验对图像重建的稀疏性限制应用),这是一种未经训练的MRI重建的未经训练的深神经网络,而无需先前在数据集上培训。它通过多域,稀疏性损失函数扩展了深层图像的方法,以比以前报道的方法更快地以更高的收敛速度获得更高的图像质量。方法:从FASTMRI数据集中带有笛卡尔底面采样方向的二维MRI数据,以针对单线线圈和多机油数据进行不同的加速率进行了不同的加速率。结果:将我们的体系结构的性能与最新的压缩传感方法和ConvdeCoder进行了比较,这是另一个未经训练的神经网络,用于二维MRI重建。 Scampi通过更好地减少底漆伪像,并在多机构成像中产生较低的误差指标来胜过这些表现。与ConvdeCoder相比,U-NET体系结构与详细的损耗功能结合,可以在更高的图像质量下更快地收敛。 Scampi可以在不明确了解线圈灵敏度概况的情况下重建多层油。此外,它是一种用于重建底面采样单线圈空间数据的新颖工具。结论:我们的方法避免了对数据集特征的过度拟合,这些功能可能会在数据库中训练的神经网络中发生,因为网络参数仅在重建数据上调整。与基线未经训练的神经网络方法相比,它允许更好的结果和更快的重建。
Purpose: We present SCAMPI (Sparsity Constrained Application of deep Magnetic resonance Priors for Image reconstruction), an untrained deep Neural Network for MRI reconstruction without previous training on datasets. It expands the Deep Image Prior approach with a multidomain, sparsity-enforcing loss function to achieve higher image quality at a faster convergence speed than previously reported methods. Methods: Two-dimensional MRI data from the FastMRI dataset with Cartesian undersampling in phase-encoding direction were reconstructed for different acceleration rates for single coil and multicoil data. Results: The performance of our architecture was compared to state-of-the-art Compressed Sensing methods and ConvDecoder, another untrained Neural Network for two-dimensional MRI reconstruction. SCAMPI outperforms these by better reducing undersampling artifacts and yielding lower error metrics in multicoil imaging. In comparison to ConvDecoder, the U-Net architecture combined with an elaborated loss-function allows for much faster convergence at higher image quality. SCAMPI can reconstruct multicoil data without explicit knowledge of coil sensitivity profiles. Moreover, it is a novel tool for reconstructing undersampled single coil k-space data. Conclusion: Our approach avoids overfitting to dataset features, that can occur in Neural Networks trained on databases, because the network parameters are tuned only on the reconstruction data. It allows better results and faster reconstruction than the baseline untrained Neural Network approach.