论文标题
学习效率的理论结合
Theoretical bound of the efficiency of learning
论文作者
论文摘要
提出了描述学习效率的统一热力学形式主义。首先,我们得出了一种不平等,它比克劳西乌斯的不等式更有力量,揭示了子系统的熵产生率的下限。其次,不平等的变化以确定学习效率的一般上限。特别是,我们体现了非平衡量子点系统和活细胞网络中效率的结合。该框架提供了在随机热力学过程中遗传的能量与信息之间的基本权衡关系。
A unified thermodynamic formalism describing the efficiency of learning is proposed. First, we derive an inequality, which is more strength than Clausius's inequality, revealing the lower bound of the entropy-production rate of a subsystem. Second, the inequality is transformed to determine the general upper limit for the efficiency of learning. In particular, we exemplify the bound of the efficiency in nonequilibrium quantum-dot systems and networks of living cells. The framework provides a fundamental trade-off relationship between energy and information inheriting in stochastic thermodynamic processes.