论文标题
来自动态变异蒙特卡洛的费米弧
Fermi Arcs From Dynamical Variational Monte Carlo
论文作者
论文摘要
变异蒙特卡洛是一种多体数值方法,随系统大小尺寸很好。它已扩展到Charlebois和Imada(2020)最近才研究绿色功能。在这里,我们将在没有翻译不变性的情况下概括为具有开放边界条件的系统的方法。删除这些约束允许应用嵌入技术等诸如聚类扰动理论(CPT)。这使我们能够在丘比特高温超导体中的伪群物理学中解决一个持久的问题,即在一个波段哈伯德模型中存在或不存在费米弧。我们研究费米表面和状态密度的行为与多达64个位点的簇掺杂的函数,远远超出了现代精确的对角线化求解器的范围。我们观察到,该技术可靠地捕获了从半填充到伪模的Mott绝缘子的过渡,这证明了Fermi Arcs的形成,最后是大量掺杂的金属状态。使用量子群集方法处理大型簇的能力有助于最大程度地减少潜在的有限尺寸效果,并能够研究具有远距离顺序的系统,这将有助于扩展这些已经强大的方法的覆盖范围,并提供有关各种强相关的多种电子系统的性质的重要见解,包括高-T $ _C $ _C $ _C $ _C $ $ _C $ CUPRATE CUPRATE CUPCRATES超导管。
Variational Monte Carlo is a many-body numerical method that scales well with system size. It has been extended to study the Green function only recently by Charlebois and Imada (2020). Here we generalize the approach to systems with open boundary conditions in the absence of translational invariance. Removing these constraints permits the application of embedding techniques like Cluster perturbation theory (CPT). This allows us to solve an enduring problem in the physics of the pseudogap in cuprate high-temperature superconductors, namely the existence or absence of Fermi arcs in the one-band Hubbard model. We study the behavior of the Fermi surface and of the density of states as a function of hole doping for clusters of up to 64 sites, well beyond the reach of modern exact diagonalization solvers. We observe that the technique reliably captures the transition from a Mott insulator at half filling to a pseudogap, evidenced by the formation of Fermi arcs, and finally to a metallic state at large doping. The ability to treat large clusters with quantum cluster methods helps to minimize potential finite size effects and enables the study of systems with long range orders, which will help extend the reach of these already powerful methods and provide important insights on the nature of various strongly correlated many-electron systems, including the high-T$_c$ cuprate superconductors.