论文标题
虹膜使用SI IV光谱线观察到的太阳过渡区域振荡的光谱研究
Spectroscopic study of solar transition region oscillations in the quiet-Sun observed by IRIS using Si IV spectral line
论文作者
论文摘要
在本文中,我们使用SI IV1393.755Å的光谱线在静sun中观察到的界面区域成像光谱仪(IRIS)来确定太阳过渡区(TR)振荡的物理性质。我们使用小波工具(例如功率,交叉动力,连贯性和相位差)以及严格的噪声模型(即PowerLaw + Constant)分析了这些振荡的性能。我们估计在静sun(QS)中每个选择的位置的强度和多普勒速度振荡的周期,并量化一个明亮和两个黑暗区域中统计学上显着的功率和相关周期的分布。在明亮的TR区域,强度和速度的平均周期分别为7分钟和8分钟。在黑暗区域,强度和速度的平均周期分别为7分钟和5.4分钟。我们还估计了每个位置的强度和多普勒速度振荡之间的相差。估计相位差的统计分布,达到-119 \度$ $ $ $ $ 13 \度,33 \度$ \ pm $ \ pm $ 10 \ guger,102 \ dem $ $ \ pm $ 10 \ pm $ 10 \ gegr \在明亮地区,而-153 \ d pm $ $ $ $ \ pm $ 13 \ pm $ $ $ $ $ $ $ $ \级,151 \ pm \ d \ \ \级,151 \ \ \ \ \ \ \ pm \ pm \ f i \ f i \ $ \。黑暗地区。统计分布表明,振荡是由于传播TR遇到的慢速磁性波而引起的。这些位置中的一些也可能与站立的慢波有关。即使在给定的时间域中,几个位置在不同频率下都表现出传播和站立振荡的存在。
In the present paper, we use Si IV 1393.755 Å spectral line observed by the Interface Region Imaging Spectrograph (IRIS) in the quiet-Sun to determine physical nature of the solar transition region (TR) oscillations. We analyze the properties of these oscillations using wavelet tools (e.g., power, cross-power, coherence, and phase difference) along with the stringent noise model (i.e., power-law + constant). We estimate the period of the intensity and Doppler velocity oscillations at each chosen location in the quiet-Sun (QS) and quantify the distribution of the statistically significant power and associated periods in one bright and two dark regions. In the bright TR region, the mean periods in intensity and velocity are 7 min, and 8 min respectively. In the dark region, the mean periods in intensity and velocity are 7 min, and 5.4 min respectively. We also estimate the phase difference between the intensity and Doppler velocity oscillations at each location. The statistical distribution of phase difference is estimated, which peaks at -119\degree $\pm$ 13\degree, 33\degree $\pm$ 10\degree, 102\degree $\pm$ 10\degree\ in the bright region, while at -153\degree $\pm$ 13\degree, 6\degree $\pm$ 20\degree, 151\degree $\pm$ 10\degree\ in the dark region. The statistical distribution reveals that the oscillations are caused by propagating slow magnetoacoustic waves encountered with the TR. Some of these locations may also be associated with the standing slow waves. Even, in the given time domain, several locations exhibit presence of both propagating and standing oscillations at different frequencies.