论文标题

使用SLEPIAN基础函数通过局部模式耦合来推断地下太阳磁性的配方

Recipe for inferring sub-surface solar magnetism via local mode-coupling using Slepian basis functions

论文作者

Das, Srijan Bharati

论文摘要

地下流动,声速和磁场的直接地震成像对于预测太阳表面上的通量管出现至关重要,这是太空天气的重要成分。 Helioseiscic模式 - 振幅互相关对$ p $ - 和$ f $ - 模式振荡的敏感性使这种亚光层扰动的正式反转。众所周知,此类问题是以一个积分方程式编写的,该方程将扰动与观察到通过``敏感性内核''连接到观察结果。虽然流动和声速的敏感性内核已知数十年并已被广泛使用,并已被广泛使用,对一般磁性敏感的一般启发性敏感性的敏感性。几何学。目前的研究提出了用于通过笛卡尔模式耦合在太阳上的局部斑块中推断出的内核,这是在太阳能物理学中首次使用SLEPIAN的功能,以使该数字构成数量,以限制这一数字。推断参数。

Direct seismic imaging of sub-surface flow, sound-speed and magnetic field is crucial for predicting flux tube emergence on the solar surface, an important ingredient for space weather. The sensitivity of helioseismic mode-amplitude cross-correlation to $p$- and $f$-mode oscillations enable formal inversion of such sub-photospheric perturbations. It is well-known that such problems are written in the form of an integral equation that connects the perturbations to the observations via ``sensitivity kernels". While the sensitivity kernels for flow and sound-speed have been known for decades and have been used extensively, formulating kernels for general magnetic perturbations had been elusive. A recent study proposed sensitivity kernels for Lorentz-stresses corresponding to global magnetic fields of general geometry. The present study is devoted to proposing kernels for inferring Lorentz-stresses as well as the solenoidal magnetic field in a local patch on the Sun via Cartesian mode-coupling. Moreover, for the first time in solar physics, Slepian functions are employed to parameterize perturbations in the horizontal dimension. This is shown to increase the number of data constraints in the inverse problem, implying an increase in the precision of inferred parameters. This paves the path to reliably imaging sub-surface solar magnetic features in, e.g., supergranules, sunspots and (emerging) active regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源