论文标题

二维随机讲述:0-1法律和空置设定为关键

Two-dimensional random interlacements: 0-1 law and the vacant set at criticality

论文作者

Collin, Orphée, Popov, Serguei

论文摘要

我们纠正并简化了以下事实的证明:在关键点$α= 1 $,二维随机插入的空缺是无限的(Comets,Popov,2017年)。此外,我们证明了与随机讲述有关的自然尾巴事件的零法律。

We correct and streamline the proof of the fact that, at the critical point $α=1$, the vacant set of the two-dimensional random interlacements is infinite (Comets, Popov, 2017). Also, we prove a zero-one law for a natural class of tail events related to the random interlacements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源