论文标题
3D VSG:长期语义场景通过3D变量场景图更改预测图
3D VSG: Long-term Semantic Scene Change Prediction through 3D Variable Scene Graphs
论文作者
论文摘要
许多应用程序要求机器人在与其他代理商(例如人类或其他机器人)共享的环境中运行。但是,这种共享场景通常会受到不同种类的长期语义场景的变化。因此,建模和预测这种变化的能力对于机器人自主权至关重要。在这项工作中,我们将语义场景变异性估计的任务形式化,并确定语义场景的三个主要品种变化:对象的位置,其语义状态或整个场景的组成。为了表示这种可变性,我们提出了可变场景图(VSG),该图表图具有可变性属性的现有3D场景图(SG)表示,代表了离散长期变更事件的可能性。我们提出了一种新颖的方法Deltavsg,以估计以监督方式估算VSG的变异性。我们在3RSCAN长期数据集上评估了我们的方法,显示了这项新型任务对现有方法的显着改善。我们的方法Deltavsg的准确性为77.1%,召回72.3%,通常会模仿人类关于室内场景如何随着时间变化的直觉。我们进一步显示了VSG预测在主动机器人变更检测任务中的实用性,与场景变化 - 诺瓦尔计划者相比,任务完成加快了66.0%。我们将代码作为开源。
Numerous applications require robots to operate in environments shared with other agents, such as humans or other robots. However, such shared scenes are typically subject to different kinds of long-term semantic scene changes. The ability to model and predict such changes is thus crucial for robot autonomy. In this work, we formalize the task of semantic scene variability estimation and identify three main varieties of semantic scene change: changes in the position of an object, its semantic state, or the composition of a scene as a whole. To represent this variability, we propose the Variable Scene Graph (VSG), which augments existing 3D Scene Graph (SG) representations with the variability attribute, representing the likelihood of discrete long-term change events. We present a novel method, DeltaVSG, to estimate the variability of VSGs in a supervised fashion. We evaluate our method on the 3RScan long-term dataset, showing notable improvements in this novel task over existing approaches. Our method DeltaVSG achieves an accuracy of 77.1% and a recall of 72.3%, often mimicking human intuition about how indoor scenes change over time. We further show the utility of VSG prediction in the task of active robotic change detection, speeding up task completion by 66.0% compared to a scene-change-unaware planner. We make our code available as open-source.