论文标题

使用指导滤波的结构传播光谱反射率估算

Structure-Preserving Spectral Reflectance Estimation using Guided Filtering

论文作者

Sippel, Frank, Seiler, Jürgen, Genser, Nils, Kaup, André

论文摘要

光谱是针对各种分类问题的非常重要的信息来源,例如歧视材料。为了降低获取此信息的成本,使用了多光谱相机。存在几种技术,可以通过利用有关光谱的性能从多光谱图像中估算光谱。不幸的是,尤其是在捕获多光谱视频时,由于视频中暴露时间有限的性质,这些图像受到噪音的严重影响。因此,高度希望明确试图降低噪声对重建光谱的影响的模型。因此,提出了一种新颖的重建算法。这种新颖的估计方法基于指导的过滤技术,该技术可以保留基本结构,同时使用空间信息来减少噪声的影响。基于自然图像光谱的评估表明,与其他最先进的空间重建方法相比,这种新技术在嘈杂的情况下产生更好的定量和主观结果。具体而言,在噪声场景中,提出的算法分别降低了平方误差和光谱角度最高46%和35%。此外,已经表明,提出的重建技术在开箱即用,并且不需要通过从带有9个通道的真实世界多光谱摄像机中重建光谱来进行任何校准或训练。

Light spectra are a very important source of information for diverse classification problems, e.g., for discrimination of materials. To lower the cost for acquiring this information, multispectral cameras are used. Several techniques exist for estimating light spectra out of multispectral images by exploiting properties about the spectrum. Unfortunately, especially when capturing multispectral videos, the images are heavily affected by noise due to the nature of limited exposure times in videos. Therefore, models that explicitly try to lower the influence of noise on the reconstructed spectrum are highly desirable. Hence, a novel reconstruction algorithm is presented. This novel estimation method is based on the guided filtering technique which preserves basic structures, while using spatial information to reduce the influence of noise. The evaluation based on spectra of natural images reveals that this new technique yields better quantitative and subjective results in noisy scenarios than other state-of-the-art spatial reconstruction methods. Specifically, the proposed algorithm lowers the mean squared error and the spectral angle up to 46% and 35% in noisy scenarios, respectively. Furthermore, it is shown that the proposed reconstruction technique works out-of-the-box and does not need any calibration or training by reconstructing spectra from a real-world multispectral camera with nine channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源