论文标题
GATRAJ:一个基于图形和注意力的多代理轨迹预测模型
GATraj: A Graph- and Attention-based Multi-Agent Trajectory Prediction Model
论文作者
论文摘要
在自动驾驶和机器人导航等智能系统中,轨迹预测一直是一个长期存在的问题。在大规模基准测试中训练的模型在提高预测准确性方面取得了重大进展。但是,对实时应用的效率的重要性不太强调。本文提出了一个名为Gatraj的基于注意力图的模型,该模型在预测准确性和推理速度方面达到了良好的平衡。我们使用注意机制来对代理的时空动力学进行建模,例如行人或车辆,以及图形卷积网络来对其相互作用进行建模。此外,实施了拉普拉斯混合物解码器,以减轻模式崩溃并为每个代理产生多种模式预测。当在ETH/UCY数据集测试人行道轨迹时,GATRAJ以更高的速度实现了最先进的预测性能,并且在Nuscenes数据集中进行自主驾驶测试时,以大约100 Hz的推理速度进行了良好的性能。我们进行了广泛的实验,以分析拉普拉斯混合物解码器的概率估计,并将其与高斯混合物解码器进行比较,以预测不同的多模式。此外,全面的消融研究证明了每个提出的模块在Gatraj中的有效性。该代码在https://github.com/mengmengliu1998/gatraj上发布。
Trajectory prediction has been a long-standing problem in intelligent systems like autonomous driving and robot navigation. Models trained on large-scale benchmarks have made significant progress in improving prediction accuracy. However, the importance on efficiency for real-time applications has been less emphasized. This paper proposes an attention-based graph model, named GATraj, which achieves a good balance of prediction accuracy and inference speed. We use attention mechanisms to model the spatial-temporal dynamics of agents, such as pedestrians or vehicles, and a graph convolutional network to model their interactions. Additionally, a Laplacian mixture decoder is implemented to mitigate mode collapse and generate diverse multimodal predictions for each agent. GATraj achieves state-of-the-art prediction performance at a much higher speed when tested on the ETH/UCY datasets for pedestrian trajectories, and good performance at about 100 Hz inference speed when tested on the nuScenes dataset for autonomous driving. We conduct extensive experiments to analyze the probability estimation of the Laplacian mixture decoder and compare it with a Gaussian mixture decoder for predicting different multimodalities. Furthermore, comprehensive ablation studies demonstrate the effectiveness of each proposed module in GATraj. The code is released at https://github.com/mengmengliu1998/GATraj.